新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章给大家分享的是有关怎样用datetime去除重复python3时间的内容。小编觉得挺实用的,因此分享给大家做个参考。一起跟随小编过来看看吧。
创新互联建站是专业的电白网站建设公司,电白接单;提供成都网站制作、网站设计、外贸网站建设,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行电白网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!
主要分为以下两点
1).index.is_unique检查索引日期是否是唯一的
2)对非唯一时间戳的数据进行聚合,通过groupby,并传入level = 0(索引的唯一一层)
dates = pd.DatetimeIndex(['2017/06/01','2017/06/02','2017/06/02','2017/06/02','2017/06/03']) dates DatetimeIndex(['2017-06-01', '2017-06-02', '2017-06-02', '2017-06-02', '2017-06-03'], dtype='datetime64[ns]', freq=None) dup_ts = pd.Series(np.arange(5),index = dates) dup_ts 2017-06-01 0 2017-06-02 1 2017-06-02 2 2017-06-02 3 2017-06-03 4 dtype: int32 dup_ts.index.is_unique False dup_ts['2017-06-02'] 2017-06-02 1 2017-06-02 2 2017-06-02 3 dtype: int32 grouped = dup_ts.groupby(level=0).mean() grouped 2017-06-01 0 2017-06-02 2 2017-06-03 4 dtype: int32 dup_df = pd.DataFrame(np.arange(10).reshape((5,2)),index = dates ) dup_df 0 1 2017-06-01 0 1 2017-06-02 2 3 2017-06-02 4 5 2017-06-02 6 7 2017-06-03 8 9 grouped_df = dup_df.groupby(level=0).mean()##针对DataFrame grouped_df
感谢各位的阅读!关于怎样用datetime去除重复python3时间就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到吧!