新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
nosql四大分类:1、KV键值对。
十年的乳源网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。全网整合营销推广的优势是能够根据用户设备显示端的尺寸不同,自动调整乳源建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联从事“乳源网站设计”,“乳源网站推广”以来,每个客户项目都认真落实执行。
2、文档型数据库。
3、列存储数据库。
4、图关系数据库。nosql是非关系型数据库,NoSQL(NotOnlySQL),意思是"不仅仅是SQL",指的是非关系型数据库,是对不同于传统的关系型数据库的数据库管理系统的统称。
nosql数据库的四种类型如下:
1.key-value键值存储数据库:
相关产品: Redis、Riak、SimpleDB、Chordless、Scalaris、Memcached.
主要应用: 内容缓存,处理大量数据的高负载访问,也用于系统日志。
优点:查找速度快,大量操作时性能高。
2.列存储数据库:
相关产品: BigTable、HBase、Cassandra、HadoopDB、GreenPlum、PNUTS.
主要应用: 分布式数据的储存与管理。
优点:查找速度快,可扩展性强,容易进行分布式扩展。
缺点:功能相对局限。
3.文档型数据库
相关产品:MongoDB、CouchDB、ThruDB、CloudKit、Perservere、Jackrabbit.
主要应用: web应用,管理面向文档的数据或者类似的半结构化数据。
优点:数据结构灵活,表结构可变,复杂性低。
缺点:查询效率低,且缺乏统一的查询语言。
4.Graph图形数据库
相关产品: Neo4J、OrientDB、InfoGrid、GraphDB.
主要应用: 复杂,互连接,低结构化的图结构场合, 专注构建关系图谱。
优点: 利用图结构相关算法, 可用于构建复杂的关系图谱。
缺点: 复杂度高。
1. 键值数据库
相关产品:Redis、Riak、SimpleDB、Chordless、Scalaris、Memcached
应用:内容缓存
优点:扩展性好、灵活性好、大量写操作时性能高
缺点:无法存储结构化信息、条件查询效率较低
使用者:百度云(Redis)、GitHub(Riak)、BestBuy(Riak)、Twitter(Ridis和Memcached)
2. 列族数据库
相关产品:BigTable、HBase、Cassandra、HadoopDB、GreenPlum、PNUTS
应用:分布式数据存储与管理
优点:查找速度快、可扩展性强、容易进行分布式扩展、复杂性低
使用者:Ebay(Cassandra)、Instagram(Cassandra)、NASA(Cassandra)、Facebook(HBase)
3. 文档数据库
相关产品:MongoDB、CouchDB、ThruDB、CloudKit、Perservere、Jackrabbit
应用:存储、索引并管理面向文档的数据或者类似的半结构化数据
优点:性能好、灵活性高、复杂性低、数据结构灵活
缺点:缺乏统一的查询语言
使用者:百度云数据库(MongoDB)、SAP(MongoDB)
4. 图形数据库
图形数据库-使用图作为数据模型来存储数据。
相关产品:Neo4J、OrientDB、InfoGrid、GraphDB
应用:大量复杂、互连接、低结构化的图结构场合,如社交网络、推荐系统等
优点:灵活性高、支持复杂的图形算法、可用于构建复杂的关系图谱
缺点:复杂性高、只能支持一定的数据规模
使用者:Adobe(Neo4J)、Cisco(Neo4J)、T-Mobile(Neo4J)
NoSQL描述的是大量结构化数据存储方法的集合,根据结构化方法以及应用场合的不同,主要可以将NoSQL分为以下几类。
(1)Column-Oriented
面向检索的列式存储,其存储结构为列式结构,同于关系型数据库的行式结构,这种结构会让很多统计聚合操作更简单方便,使系统具有较高的可扩展性。这类数据库还可以适应海量数据的增加以及数据结构的变化,这个特点与云计算所需的相关需求是相符合的,比如GoogleAppengine的BigTable以及相同设计理念的Hadoop子系统HaBase就是这类的典型代表。需要特别指出的是,Big Table特别适用于MapReduce处理,这对于云计算的发展有很高的适应性。
(2)Key-Value。
面向高性能并发读/写的缓存存储,其结构类似于数据结构中的Hash表,每个Key分别对应一个Value,能够提供非常快的查询速度、大数据存放量和高并发操作,非常适合通过主键对数据进行查询和修改等操作。Key-Value数据库的主要特点是具有极高的并发读/写性能,非常适合作为缓存系统使用。MemcacheDB、BerkeleyDB、Redis、Flare就是Key-Value数据库的代表。
(3)Document-Oriented。
面向海量数据访问的文档存储,这类存储的结构与Key-Value非常相似,也是每个Key分别对应一个Value,但是这个Value主要以JSON(JavaScriptObjectNotations)或者XML等格式的文档来进行存储。这种存储方式可以很方便地被面向对象的语言所使用。这类数据库可在海量的数据中快速查询数据,典型代表为MongoDB、CouchDB等。
NoSQL具有扩展简单、高并发、高稳定性、成本低廉等优势,也存在一些问题。例如,NoSQL暂不提供SQL的支持,会造成开发人员的额外学习成本;NoSQL大多为开源软件其成熟度与商用的关系型数据库系统相比有差距;NoSQL的架构特性决定了其很难保证数据的完整性,适合在一些特殊的应用场景使用。
基本含义NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。NoSQLNoSQL数据库的四大分类键值(Key-Value)存储数据库这一类数据库主要会使用到一个哈希表,这个表中有一个特定的键和一个指针指向特定的数据。Key/value模型对于IT系统来说的优势在于简单、易部署。但是如果DBA只对部分值进行查询或更新的时候,Key/value就显得效率低下了。[3] 举例如:Tokyo Cabinet/Tyrant, Redis, Voldemort, Oracle BDB.列存储数据库。这部分数据库通常是用来应对分布式存储的海量数据。键仍然存在,但是它们的特点是指向了多个列。这些列是由列家族来安排的。如:Cassandra, HBase, Riak.文档型数据库文档型数据库的灵感是来自于Lotus Notes办公软件的,而且它同第一种键值存储相类似。该类型的数据模型是版本化的文档,半结构化的文档以特定的格式存储,比如JSON。文档型数据库可 以看作是键值数据库的升级版,允许之间嵌套键值。而且文档型数据库比键值数据库的查询效率更高。如:CouchDB, MongoDb. 国内也有文档型数据库SequoiaDB,已经开源。图形(Graph)数据库图形结构的数据库同其他行列以及刚性结构的SQL数据库不同,它是使用灵活的图形模型,并且能够扩展到多个服务器上。NoSQL数据库没有标准的查询语言(SQL),因此进行数据库查询需要制定数据模型。许多NoSQL数据库都有REST式的数据接口或者查询API。[2] 如:Neo4J, InfoGrid, Infinite Graph.因此,我们总结NoSQL数据库在以下的这几种情况下比较适用:1、数据模型比较简单;2、需要灵活性更强的IT系统;3、对数据库性能要求较高;4、不需要高度的数据一致性;5、对于给定key,比较容易映射复杂值的环境。