新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
Spark中怎么实现聚合功能,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
为二道等地区用户提供了全套网页设计制作服务,及二道网站建设行业解决方案。主营业务为网站设计、网站制作、二道网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!
互联网公司-面试题: /** 举个例子,比如要统计用户的总访问次数和去除访问同一个URL之后的总访问次数,随便造了几条样例数据(四个字段:id,name,vtm,url,vtm字段本例没用,不用管)如下: id1,user1,2,http://www.hupu.com id1,user1,2,http://www.hupu.com id1,user1,3,http://www.hupu.com id1,user1,100,http://www.hupu.com id2,user2,2,http://www.hupu.com id2,user2,1,http://www.hupu.com id2,user2,50,http://www.hupu.com id2,user2,2,http://touzhu.hupu.com 根据这个数据集,我们可以写hql 实现: select id,name, count(0) as ct,count(distinct url) as urlcount from table group by id,name; 得出结果应该是: id1,user1,4,1 id2,user2,4,2 下面用Spark实现这个聚合功能<发现Spark还是有难度的,卧槽> 简单说说MR的解析过程: map阶段: id和name组合为key, url为value reduce阶段: len(urls) 出现次数, len(set(urls)) 出现用户数 由于本人是不写MR,导致面试很尴尬。 想装逼写个Spark, 发现难度很大,因为的确很多函数不熟悉。
代码如下:
import org.apache.spark.SparkContext._ import org.apache.spark._ object SparkDemo2 { def main(args: Array[String]) { case class User(id: String, name: String, vtm: String, url: String) //val rowkey = (new RowKey).evaluate(_) // val HADOOP_USER = "hdfs" // 设置访问spark使用的用户名 // System.setProperty("user.name", HADOOP_USER); // 设置访问hadoop使用的用户名 // System.setProperty("HADOOP_USER_NAME", HADOOP_USER); val conf = new SparkConf().setAppName("wordcount").setMaster("local") //.setExecutorEnv("HADOOP_USER_NAME", HADOOP_USER) val sc = new SparkContext(conf) val data = sc.textFile("/Users/jiangzl/Desktop/test.txt") val rdd1 = data.map(line => { val r = line.split(",") User(r(0), r(1), r(2), r(3)) }) val rdd2 = rdd1.map(r => ((r.id, r.name), r)) val seqOp = (a: (Int, List[String]), b: User) => a match { case (0, List()) => (1, List(b.url)) case _ => (a._1 + 1, b.url :: a._2) } val combOp = (a: (Int, List[String]), b: (Int, List[String])) => { (a._1 + b._1, a._2 ::: b._2) } println("-----------------------------------------") val rdd3 = rdd2.aggregateByKey((0, List[String]()))(seqOp, combOp).map(a => { (a._1, a._2._1, a._2._2.distinct.length) }) rdd3.collect.foreach(println) println("-----------------------------------------") sc.stop() } }
修改Scala版本2.11.7改为2.10.4
simple.sbt
name := "SparkDemo Project" version := "1.0" scalaVersion := "2.11.7" libraryDependencies += "org.apache.spark" %% "spark-core" % "1.4.1" ———————————————————————————修改为:—————————————————————————— name := "SparkDemo Project" version := "1.0" scalaVersion := "2.10.4" libraryDependencies += "org.apache.spark" %% "spark-core" % "1.4.1"
运行过程
jiangzhongliandeMacBook-Pro:spark-1.4.1-bin-hadoop2.6 jiangzl$ ./bin/spark-submit --class "SparkDemo2" ~/Desktop/tmp/target/scala-2.11/simple-project_2.11-1.0.jar Exception in thread "main" java.lang.NoSuchMethodError: scala.runtime.VolatileObjectRef.zero()Lscala/runtime/VolatileObjectRef; at SparkDemo2$.main(tmp_spark.scala) at SparkDemo2.main(tmp_spark.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:665) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:170) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:193) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:112) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) ———————————————————————————修改为:—————————————————————————— jiangzhongliandeMacBook-Pro:spark-1.4.1-bin-hadoop2.6 jiangzl$ ./bin/spark-submit --class "SparkDemo2" ~/Desktop/tmp/target/scala-2.10/sparkdemo-project_2.10-1.0.jar 16/04/29 12:40:43 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable ----------------------------------------- ((id1,user1),4,1) ((id2,user2),4,2) -----------------------------------------
看完上述内容,你们掌握Spark中怎么实现聚合功能的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注创新互联行业资讯频道,感谢各位的阅读!