新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
本文小编为大家详细介绍“redis实现分布式锁的五种方法是什么”,内容详细,步骤清晰,细节处理妥当,希望这篇“Redis实现分布式锁的五种方法是什么”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。
创新互联公司专注于略阳网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供略阳营销型网站建设,略阳网站制作、略阳网页设计、略阳网站官网定制、微信小程序开发服务,打造略阳网络公司原创品牌,更为您提供略阳网站排名全网营销落地服务。
单机数据一致性架构如下图所示:多个可客户访问同一个服务器,连接同一个数据库。
场景描述:客户端模拟购买商品过程,在Redis
中设定库存总数剩100个
,多个客户端同时并发购买。
@RestController public class IndexController1 { @Autowired StringRedisTemplate template; @RequestMapping("/buy1") public String index(){ // Redis中存有goods:001号商品,数量为100 String result = template.opsForValue().get("goods:001"); // 获取到剩余商品数 int total = result == null ? 0 : Integer.parseInt(result); if( total > 0 ){ // 剩余商品数大于0 ,则进行扣减 int realTotal = total -1; // 将商品数回写数据库 template.opsForValue().set("goods:001",String.valueOf(realTotal)); System.out.println("购买商品成功,库存还剩:"+realTotal +"件, 服务端口为8001"); return "购买商品成功,库存还剩:"+realTotal +"件, 服务端口为8001"; }else{ System.out.println("购买商品失败,服务端口为8001"); } return "购买商品失败,服务端口为8001"; } }
使用Jmeter
模拟高并发场景,测试结果如下:
测试结果出现多个用户购买同一商品,发生了数据不一致问题!
解决办法:单体应用的情况下,对并发的操作进行加锁操作,保证对数据的操作具有原子性
synchronized
ReentrantLock
@RestController public class IndexController2 { // 使用ReentrantLock锁解决单体应用的并发问题 Lock lock = new ReentrantLock(); @Autowired StringRedisTemplate template; @RequestMapping("/buy2") public String index() { lock.lock(); try { String result = template.opsForValue().get("goods:001"); int total = result == null ? 0 : Integer.parseInt(result); if (total > 0) { int realTotal = total - 1; template.opsForValue().set("goods:001", String.valueOf(realTotal)); System.out.println("购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001"); return "购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001"; } else { System.out.println("购买商品失败,服务端口为8001"); } } catch (Exception e) { lock.unlock(); } finally { lock.unlock(); } return "购买商品失败,服务端口为8001"; } }
上面解决了单体应用的数据一致性问题,但如果是分布式架构部署呢,架构如下:
提供两个服务,端口分别为8001
、8002
,连接同一个Redis
服务,在服务前面有一台Nginx
作为负载均衡
两台服务代码相同,只是端口不同
将8001
、8002
两个服务启动,每个服务依然用ReentrantLock
加锁,用Jmeter
做并发测试,发现会出现数据一致性问题!
取消单机锁,下面使用redis
的set
命令来实现分布式加锁
SET KEY VALUE [EX seconds] [PX milliseconds] [NX|XX]
EX seconds 设置指定的到期时间(以秒为单位)
PX milliseconds 设置指定的到期时间(以毫秒为单位)
NX 仅在键不存在时设置键
XX 只有在键已存在时才设置
@RestController public class IndexController4 { // Redis分布式锁的key public static final String REDIS_LOCK = "good_lock"; @Autowired StringRedisTemplate template; @RequestMapping("/buy4") public String index(){ // 每个人进来先要进行加锁,key值为"good_lock",value随机生成 String value = UUID.randomUUID().toString().replace("-",""); try{ // 加锁 Boolean flag = template.opsForValue().setIfAbsent(REDIS_LOCK, value); // 加锁失败 if(!flag){ return "抢锁失败!"; } System.out.println( value+ " 抢锁成功"); String result = template.opsForValue().get("goods:001"); int total = result == null ? 0 : Integer.parseInt(result); if (total > 0) { int realTotal = total - 1; template.opsForValue().set("goods:001", String.valueOf(realTotal)); // 如果在抢到所之后,删除锁之前,发生了异常,锁就无法被释放, // 释放锁操作不能在此操作,要在finally处理 // template.delete(REDIS_LOCK); System.out.println("购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001"); return "购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001"; } else { System.out.println("购买商品失败,服务端口为8001"); } return "购买商品失败,服务端口为8001"; }finally { // 释放锁 template.delete(REDIS_LOCK); } } }
上面的代码,可以解决分布式架构中数据一致性问题。但再仔细想想,还是会有问题,下面进行改进。
在上面的代码中,如果程序在运行期间,部署了微服务jar
包的机器突然挂了,代码层面根本就没有走到finally
代码块,也就是说在宕机前,锁并没有被删除掉,这样的话,就没办法保证解锁
所以,这里需要对这个key
加一个过期时间,Redis
中设置过期时间有两种方法:
template.expire(REDIS_LOCK,10, TimeUnit.SECONDS)
template.opsForValue().setIfAbsent(REDIS_LOCK, value,10L,TimeUnit.SECONDS)
第一种方法需要单独的一行代码,且并没有与加锁放在同一步操作,所以不具备原子性,也会出问题
第二种方法在加锁的同时就进行了设置过期时间,所有没有问题,这里采用这种方式
调整下代码,在加锁的同时,设置过期时间:
// 为key加一个过期时间,其余代码不变 Boolean flag = template.opsForValue().setIfAbsent(REDIS_LOCK,value,10L,TimeUnit.SECONDS);
这种方式解决了因服务突然宕机而无法释放锁的问题。但再仔细想想,还是会有问题,下面进行改进。
方式二设置了key
的过期时间,解决了key
无法删除的问题,但问题又来了
上面设置了key
的过期时间为10
秒,如果业务逻辑比较复杂,需要调用其他微服务,处理时间需要15
秒(模拟场
景,别较真),而当10
秒钟过去之后,这个key
就过期了,其他请求就又可以设置这个key
,此时如果耗时15
秒
的请求处理完了,回来继续执行程序,就会把别人设置的key
给删除了,这是个很严重的问题!
所以,谁上的锁,谁才能删除
@RestController public class IndexController6 { public static final String REDIS_LOCK = "good_lock"; @Autowired StringRedisTemplate template; @RequestMapping("/buy6") public String index(){ // 每个人进来先要进行加锁,key值为"good_lock" String value = UUID.randomUUID().toString().replace("-",""); try{ // 为key加一个过期时间 Boolean flag = template.opsForValue().setIfAbsent(REDIS_LOCK, value,10L,TimeUnit.SECONDS); // 加锁失败 if(!flag){ return "抢锁失败!"; } System.out.println( value+ " 抢锁成功"); String result = template.opsForValue().get("goods:001"); int total = result == null ? 0 : Integer.parseInt(result); if (total > 0) { // 如果在此处需要调用其他微服务,处理时间较长。。。 int realTotal = total - 1; template.opsForValue().set("goods:001", String.valueOf(realTotal)); System.out.println("购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001"); return "购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001"; } else { System.out.println("购买商品失败,服务端口为8001"); } return "购买商品失败,服务端口为8001"; }finally { // 谁加的锁,谁才能删除!!!! if(template.opsForValue().get(REDIS_LOCK).equals(value)){ template.delete(REDIS_LOCK); } } } }
这种方式解决了因服务处理时间太长而释放了别人锁的问题。这样就没问题了吗?
在上面方式三下,规定了谁上的锁,谁才能删除,但finally
快的判断和del
删除操作不是原子操作,并发的时候也会出问题,并发嘛,就是要保证数据的一致性,保证数据的一致性,最好要保证对数据的操作具有原子性。
在Redis
的set
命令介绍中,最后推荐Lua
脚本进行锁的删除,地址
@RestController public class IndexController7 { public static final String REDIS_LOCK = "good_lock"; @Autowired StringRedisTemplate template; @RequestMapping("/buy7") public String index(){ // 每个人进来先要进行加锁,key值为"good_lock" String value = UUID.randomUUID().toString().replace("-",""); try{ // 为key加一个过期时间 Boolean flag = template.opsForValue().setIfAbsent(REDIS_LOCK, value,10L,TimeUnit.SECONDS); // 加锁失败 if(!flag){ return "抢锁失败!"; } System.out.println( value+ " 抢锁成功"); String result = template.opsForValue().get("goods:001"); int total = result == null ? 0 : Integer.parseInt(result); if (total > 0) { // 如果在此处需要调用其他微服务,处理时间较长。。。 int realTotal = total - 1; template.opsForValue().set("goods:001", String.valueOf(realTotal)); System.out.println("购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001"); return "购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001"; } else { System.out.println("购买商品失败,服务端口为8001"); } return "购买商品失败,服务端口为8001"; }finally { // 谁加的锁,谁才能删除,使用Lua脚本,进行锁的删除 Jedis jedis = null; try{ jedis = RedisUtils.getJedis(); String script = "if redis.call('get',KEYS[1]) == ARGV[1] " + "then " + "return redis.call('del',KEYS[1]) " + "else " + " return 0 " + "end"; Object eval = jedis.eval(script, Collections.singletonList(REDIS_LOCK), Collections.singletonList(value)); if("1".equals(eval.toString())){ System.out.println("-----del redis lock ok...."); }else{ System.out.println("-----del redis lock error ...."); } }catch (Exception e){ }finally { if(null != jedis){ jedis.close(); } } } } }
在方式四下,规定了谁上的锁,谁才能删除,并且解决了删除操作没有原子性问题。但还没有考虑缓存续命,以及Redis
集群部署下,异步复制造成的锁丢失:主节点没来得及把刚刚set
进来这条数据给从节点,就挂了。所以直接上RedLock
的Redisson
落地实现。
@RestController public class IndexController8 { public static final String REDIS_LOCK = "good_lock"; @Autowired StringRedisTemplate template; @Autowired Redisson redisson; @RequestMapping("/buy8") public String index(){ RLock lock = redisson.getLock(REDIS_LOCK); lock.lock(); // 每个人进来先要进行加锁,key值为"good_lock" String value = UUID.randomUUID().toString().replace("-",""); try{ String result = template.opsForValue().get("goods:001"); int total = result == null ? 0 : Integer.parseInt(result); if (total > 0) { // 如果在此处需要调用其他微服务,处理时间较长。。。 int realTotal = total - 1; template.opsForValue().set("goods:001", String.valueOf(realTotal)); System.out.println("购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001"); return "购买商品成功,库存还剩:" + realTotal + "件, 服务端口为8001"; } else { System.out.println("购买商品失败,服务端口为8001"); } return "购买商品失败,服务端口为8001"; }finally { if(lock.isLocked() && lock.isHeldByCurrentThread()){ lock.unlock(); } } } }
读到这里,这篇“Redis实现分布式锁的五种方法是什么”文章已经介绍完毕,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注创新互联行业资讯频道。