新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇“spark作业怎么实现”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“spark作业怎么实现”文章吧。
10年积累的成都网站设计、成都做网站经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先建设网站后付款的网站建设流程,更有朝天免费网站建设让你可以放心的选择与我们合作。
将sample.log的数据发送到Kafka中,经过Spark Streaming处理,将数据格式变为以下形式: commandid | houseid | gathertime | srcip | destip |srcport| destport | domainname | proxytype | proxyip | proxytype | title | content | url | logid 在发送到kafka的另一个队列中 要求: 1、sample.log => 读文件,将数据发送到kafka队列中 2、从kafka队列中获取数据(0.10 接口不管理offset),变更数据格式 3、处理后的数据在发送到kafka另一个队列中 分析 1 使用课程中的redis工具类管理offset 2 读取日志数据发送数据到topic1 3 消费主题,将数据的分割方式修改为竖线分割,再次发送到topic2
1.OffsetsWithRedisUtils
package home.one import java.util import org.apache.kafka.common.TopicPartition import org.apache.spark.streaming.kafka010.OffsetRange import redis.clients.jedis.{Jedis, JedisPool, JedisPoolConfig} import scala.collection.mutable object OffsetsWithRedisUtils { // 定义Redis参数 private val redisHost = "linux123" private val redisPort = 6379 // 获取Redis的连接 private val config = new JedisPoolConfig // 最大空闲数 config.setMaxIdle(5) // 最大连接数 config.setMaxTotal(10) private val pool = new JedisPool(config, redisHost, redisPort, 10000) private def getRedisConnection: Jedis = pool.getResource private val topicPrefix = "kafka:topic" // Key:kafka:topic:TopicName:groupid private def getKey(topic: String, groupid: String) = s"$topicPrefix:$topic:$groupid" // 根据 key 获取offsets def getOffsetsFromRedis(topics: Array[String], groupId: String): Map[TopicPartition, Long] = { val jedis: Jedis = getRedisConnection val offsets: Array[mutable.Map[TopicPartition, Long]] = topics.map { topic => val key = getKey(topic, groupId) import scala.collection.JavaConverters._ // 将获取到的redis数据由Java的map转换为scala的map,数据格式为{key:[{partition,offset}]} jedis.hgetAll(key) .asScala .map { case (partition, offset) => new TopicPartition(topic, partition.toInt) -> offset.toLong } } // 归还资源 jedis.close() offsets.flatten.toMap } // 将offsets保存到Redis中 def saveOffsetsToRedis(offsets: Array[OffsetRange], groupId: String): Unit = { // 获取连接 val jedis: Jedis = getRedisConnection // 组织数据 offsets.map{range => (range.topic, (range.partition.toString, range.untilOffset.toString))} .groupBy(_._1) .foreach{case (topic, buffer) => val key: String = getKey(topic, groupId) import scala.collection.JavaConverters._ // 同样将scala的map转换为Java的map存入redis中 val maps: util.Map[String, String] = buffer.map(_._2).toMap.asJava // 保存数据 jedis.hmset(key, maps) } jedis.close() } }
KafkaProducer
package home.one import java.util.Properties import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord} import org.apache.kafka.common.serialization.StringSerializer import org.apache.log4j.{Level, Logger} import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} object KafkaProducer { def main(args: Array[String]): Unit = { Logger.getLogger("org").setLevel(Level.ERROR) val conf = new SparkConf().setAppName(this.getClass.getCanonicalName.init).setMaster("local[*]") val sc = new SparkContext(conf) // 读取sample.log文件数据 val lines: RDD[String] = sc.textFile("data/sample.log") // 定义 kafka producer参数 val prop = new Properties() // kafka的访问地址 prop.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "linux121:9092") // key和value的序列化方式 prop.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, classOf[StringSerializer]) prop.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, classOf[StringSerializer]) // 将读取到的数据发送到mytopic1 lines.foreachPartition{iter => // 初始化KafkaProducer val producer = new KafkaProducer[String, String](prop) iter.foreach{line => // 封装数据 val record = new ProducerRecord[String, String]("mytopic1", line) // 发送数据 producer.send(record) } producer.close() } } }
3.HomeOne
package home.one import java.util.Properties import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord} import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord} import org.apache.kafka.common.serialization.{StringDeserializer, StringSerializer} import org.apache.log4j.{Level, Logger} import org.apache.spark.SparkConf import org.apache.spark.streaming.dstream.InputDStream import org.apache.spark.streaming.kafka010._ import org.apache.spark.streaming.{Seconds, StreamingContext} object HomeOne { val log = Logger.getLogger(this.getClass) def main(args: Array[String]): Unit = { Logger.getLogger("org").setLevel(Level.ERROR) val conf = new SparkConf().setAppName(this.getClass.getCanonicalName).setMaster("local[*]") val ssc = new StreamingContext(conf, Seconds(5)) // 需要消费的topic val topics: Array[String] = Array("mytopic1") val groupid = "mygroup1" // 定义kafka相关参数 val kafkaParams: Map[String, Object] = getKafkaConsumerParameters(groupid) // 从Redis获取offset val fromOffsets = OffsetsWithRedisUtils.getOffsetsFromRedis(topics, groupid) // 创建DStream val dstream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream( ssc, LocationStrategies.PreferConsistent, // 从kafka中读取数据 ConsumerStrategies.Subscribe[String, String](topics, kafkaParams, fromOffsets) ) // 转换后的数据发送到另一个topic dstream.foreachRDD { rdd => if (!rdd.isEmpty) { // 获取消费偏移量 val offsetRanges: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges // 处理数据发送到topic2 rdd.foreachPartition(process) // 将offset保存到Redis OffsetsWithRedisUtils.saveOffsetsToRedis(offsetRanges, groupid) } } // 启动作业 ssc.start() // 持续执行 ssc.awaitTermination() } // 将处理后的数据发送到topic2 def process(iter: Iterator[ConsumerRecord[String, String]]) = { iter.map(line => parse(line.value)) .filter(!_.isEmpty) .foreach(line => sendMsg2Topic(line, "mytopic2")) } // 调用kafka生产者发送消息 def sendMsg2Topic(msg: String, topic: String): Unit = { val producer = new KafkaProducer[String, String](getKafkaProducerParameters()) val record = new ProducerRecord[String, String](topic, msg) producer.send(record) } // 修改数据格式,将逗号分隔变成竖线分割 def parse(text: String): String = { try { val arr = text.replace("<<>>", "").split(",") if (arr.length != 15) return "" arr.mkString("|") } catch { case e: Exception => log.error("解析数据出错!", e) "" } } // 定义kafka消费者的配置信息 def getKafkaConsumerParameters(groupid: String): Map[String, Object] = { Map[String, Object]( ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "linux121:9092", ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer], ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer], ConsumerConfig.GROUP_ID_CONFIG -> groupid, ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG -> (false: java.lang.Boolean), ) } // 定义生产者的kafka配置 def getKafkaProducerParameters(): Properties = { val prop = new Properties() prop.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "linux121:9092") prop.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, classOf[StringSerializer]) prop.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, classOf[StringSerializer]) prop } }
/* 假设机场的数据如下: 1, "SFO" 2, "ORD" 3, "DFW" 机场两两之间的航线及距离如下: 1, 2,1800 2, 3, 800 3, 1, 1400 用 GraphX 完成以下需求: 求所有的顶点 求所有的边 求所有的triplets 求顶点数 求边数 求机场距离大于1000的有几个,有哪些 按所有机场之间的距离排序(降序),输出结果 */
代码:
import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.graphx.{Edge, Graph, VertexId} import org.apache.spark.rdd.RDD object TwoHome { def main(args: Array[String]): Unit = { // 初始化 val conf = new SparkConf().setAppName(this.getClass.getCanonicalName.init).setMaster("local[*]") val sc = new SparkContext(conf) sc.setLogLevel("warn") //初始化数据 val vertexArray: Array[(Long, String)] = Array((1L, "SFO"), (2L, "ORD"), (3L, "DFW")) val edgeArray: Array[Edge[Int]] = Array( Edge(1L, 2L, 1800), Edge(2L, 3L, 800), Edge(3L, 1L, 1400) ) //构造vertexRDD和edgeRDD val vertexRDD: RDD[(VertexId, String)] = sc.makeRDD(vertexArray) val edgeRDD: RDD[Edge[Int]] = sc.makeRDD(edgeArray) //构造图 val graph: Graph[String, Int] = Graph(vertexRDD, edgeRDD) //所有的顶点 println("所有顶点:") graph.vertices.foreach(println) //所有的边 println("所有边:") graph.edges.foreach(println) //所有的triplets println("所有三元组信息:") graph.triplets.foreach(println) //求顶点数 val vertexCnt = graph.vertices.count() println(s"总顶点数:$vertexCnt") //求边数 val edgeCnt = graph.edges.count() println(s"总边数:$edgeCnt") //机场距离大于1000的 println("机场距离大于1000的边信息:") graph.edges.filter(_.attr > 1000).foreach(println) //按所有机场之间的距离排序(降序) println("降序排列所有机场之间距离") graph.edges.sortBy(-_.attr).collect().foreach(println) } }
运行结果
以上就是关于“spark作业怎么实现”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注创新互联行业资讯频道。