新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
本篇内容主要讲解“怎么用Python分析全网取暖器数据”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“怎么用Python分析全网取暖器数据”吧!
为宜春等地区用户提供了全套网页设计制作服务,及宜春网站建设行业解决方案。主营业务为网站设计、成都网站建设、宜春网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!
我们使用Python获取了淘宝网搜索关键词暖气片、取暖器、壁挂炉的商品数据,并进行了数据分析。
首先导入获取的数据。
# 导入工具包 import numpy as np import pandas as pd from pyecharts.charts import Bar, Pie, Map, Page from pyecharts import options as opts import jieba # 读取数据 df_all = pd.read_csv('../data/导出数据.csv') df_all.head()
df_all.shape (13212, 7)
此处我们需要对数据集进行数据清洗以便后续分析和可视化,主要工作内容如下:
删除记录的重复值
goods_price列处理:提取数值
purchase_num列处理:提取数值
计算销售额sales_volume = goods_price*purchase_num
删除多余的列
代码实现如下:
df = df_all.copy() # 去除重复值 df.drop_duplicates(inplace=True) df.shape (6849, 7) # 筛选记录 df = df[df['purchase_num'].str.contains('人付款')] # goods_price列处理 df['goods_price'] = df['goods_price'].str.extract('(\d+\.{0,1}\d*)') df['goods_price'] = df['goods_price'].astype('float') # purchase_num列处理 df['num'] = df['purchase_num'].str.extract('(\d+\.{0,1}\d*)') df['num'] = df['num'].astype('float') df['unit'] = [10000 if '万' in i else 1 for i in df['purchase_num']] # 计算销量 df['purchase_num'] = df['num'] * df['unit'] # 计算销售额 df['sales_volume'] = df['goods_price'] * df['purchase_num'] # 提取省份字段 df['province_name'] = df['location'].astype('str').str.split(' ').apply(lambda x:x[0]) # 删除多余的列 df.drop(['num', 'unit', 'detail_url'], axis=1, inplace=True) # 重置索引 df = df.reset_index(drop=True) df.head()
可以看到"取暖器">
接着,看到店铺月销量排名Top10。
可以看到店铺销量前十,凯瑞莱旗舰店位居第一。其后春尚电器专营店和苏宁易购分别是第二第三名。排在前十的还有美的、tcl等品牌。
# 计算top10店铺 shop_top10 = df.groupby('shop_name')['purchase_num'].sum().sort_values(ascending=False).head(10)
这些取暖器的产地都在哪儿呢?经过分析发现,浙江是生产取暖器的头号大省,在产地销量排名中一骑绝尘位居第一。之后排在第二位的是广东。湖南、江苏、山东分别位居第三第四第五名。
# 计算销量top10 province_top10 = df.groupby('province_name')['purchase_num'].sum().sort_values(ascending=False).head(10)
取暖器都卖多少钱呢?经过分析发现,100元以下的商品是最多占比高达34.76%。其次是200-500元的商品,占比22.09%。
与此同时,在销量方面,价格在100元以下和100-200元之间的取暖产品也是销量最好的,全网销售量分别占比37.49%和35.92%。
到此,相信大家对“怎么用Python分析全网取暖器数据”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!