新网创想网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

hadoop中如何确定map和reduce数目

这篇文章给大家分享的是有关hadoop中如何确定map和reduce数目的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

专注于为中小企业提供成都网站建设、做网站服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业南靖免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了上1000家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。

map的数量
map的数量通常是由hadoop集群的DFS块大小确定的,也就是输入文件的总块数,正常的map数量的并行规模大致是每一个Node是10~100个,对于CPU消耗较小的作业可以设置Map数量为300个左右,但是由于hadoop的每一个任务在初始化时需要一定的时间,因此比较合理的情况是每个map执行的时间至少超过1分钟。具体的数据分片是这样的,InputFormat在默认情况下会根据hadoop集群的DFS块大小进行分片,每一个分片会由一个map任务来进行处理,当然用户还是可以通过参数mapred.min.split.size参数在作业提交客户端进行自定义设置。还有一个重要参数就是mapred.map.tasks,这个参数设置的map数量仅仅是一个提示,只有当InputFormat 决定了map任务的个数比mapred.map.tasks值小时才起作用。同样,Map任务的个数也能通过使用JobConf 的conf.setNumMapTasks(int num)方法来手动地设置。这个方法能够用来增加map任务的个数,但是不能设定任务的个数小于Hadoop系统通过分割输入数据得到的值。当然为了提高集群的并发效率,可以设置一个默认的map数量,当用户的map数量较小或者比本身自动分割的值还小时可以使用一个相对交大的默认值,从而提高整体hadoop集群的效率。

2 reduece的数量
reduce在运行时往往需要从相关map端复制数据到reduce节点来处理,因此相比于map任务。reduce节点资源是相对比较缺少的,同时相对运行较慢,正确的reduce任务的个数应该是0.95或者1.75 *(节点数 ×mapred.tasktracker.tasks.maximum参数值)。如果任务数是节点个数的0.95倍,那么所有的reduce任务能够在 map任务的输出传输结束后同时开始运行。如果任务数是节点个数的1.75倍,那么高速的节点会在完成他们第一批reduce任务计算之后开始计算第二批 reduce任务,这样的情况更有利于负载均衡。同时需要注意增加reduce的数量虽然会增加系统的资源开销,但是可以改善负载匀衡,降低任务失败带来的负面影响。同样,Reduce任务也能够与 map任务一样,通过设定JobConf 的conf.setNumReduceTasks(int num)方法来增加任务个数。

3 reduce数量为0
有些作业不需要进行归约进行处理,那么就可以设置reduce的数量为0来进行处理,这种情况下用户的作业运行速度相对较高,map的输出会直接写入到 SetOutputPath(path)设置的输出目录,而不是作为中间结果写到本地。同时Hadoop框架在写入文件系统前并不对之进行排序。

感谢各位的阅读!关于“hadoop中如何确定map和reduce数目”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!


当前名称:hadoop中如何确定map和reduce数目
地址分享:http://wjwzjz.com/article/jpeohs.html
在线咨询
服务热线
服务热线:028-86922220
TOP