新网创想网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

Go如何防止goroutine泄露

这篇文章主要介绍“Go如何防止goroutine泄露”,在日常操作中,相信很多人在Go如何防止goroutine泄露问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Go如何防止goroutine泄露”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

成都创新互联公司,为您提供重庆网站建设网站制作、网站营销推广、网站开发设计,对服务成都服务器租用等多个行业拥有丰富的网站建设及推广经验。成都创新互联公司网站建设公司成立于2013年,提供专业网站制作报价服务,我们深知市场的竞争激烈,认真对待每位客户,为客户提供赏心悦目的作品。 与客户共同发展进步,是我们永远的责任!

概述

Go 的并发模型与其他语言不同,虽说它简化了并发程序的开发难度,但如果不了解使用方法,常常会遇到 goroutine 泄露的问题。虽然 goroutine 是轻量级的线程,占用资源很少,但如果一直得不到释放并且还在不断创建新协程,毫无疑问是有问题的,并且是要在程序运行几天,甚至更长的时间才能发现的问题。

对于上面描述的问题,我觉得可以从两方面入手解决,如下:

一是预防,要做到预防,我们就需要了解什么样的代码会产生泄露,以及了解正确的写法是如何的;

二是监控,虽说预防减少了泄露产生的概率,但没有人敢说自己不犯错,因而,通常我们还需要一些监控手段进一步保证程序的健壮性;

接下来,我将会分两篇文章分别从这两个角度进行介绍,今天先谈第一点。

如何监控泄露

本文主要集中在第一点上,但为了更好的演示效果,可以先介绍一个最简单的监控方式。通过 runtime.NumGoroutine() 获取当前运行中的 goroutine 数量,通过它确认是否发生泄漏。它的使用非常简单,就不为它专门写个例子了。

一个简单的例子

语言级别的并发支持是 Go 的一大优势,但这个优势也很容易被滥用。通常我们在开始 Go 并发学习时,常常听别人说,Go 的并发非常简单,在调用函数前加上 go 关键词便可启动 goroutine,即一个并发单元,但很多人可能只听到了这句话,然后就出现了类似下面的代码:

package main

import (
    "fmt"
    "runtime"
    "time"
)

func sayHello() {
    for {
        fmt.Println("Hello gorotine")
        time.Sleep(time.Second)
    }
}

func main() {
    defer func() {
        fmt.Println("the number of goroutines: ", runtime.NumGoroutine())
    }()

    go sayHello()
    fmt.Println("Hello main")
}

对 Go 比较熟悉的话,很容易发现这段代码的问题,sayHello 是个死循环,没有如何退出机制,因此也就没有任何办法释放创建的 goroutine。我们通过在 main 函数最前面的 defer 实现在函数退出时打印当前运行中的 goroutine 数量,毫无意外,它的输出如下:

the number of goroutines: 2

不过,因为上面的程序并非常驻,有泄露问题也不大,程序退出后系统会自动回收运行时资源。但如果这段代码在常驻服务中执行,比如 http server,每接收到一个请求,便会启动一次 sayHello,时间流逝,每次启动的 goroutine 都得不到释放,你的服务将会离奔溃越来越近。

这个例子比较简单,我相信,对 Go 的并发稍微有点了解的朋友都不会犯这个错。

泄露情况分类

前面介绍的例子由于在 goroutine 运行死循环导致的泄露。接下来,我会按照并发的数据同步方式对泄露的各种情况进行分析。简单可归于两类,即:

  • channel 导致的泄露

  • 传统同步机制导致的泄露

传统同步机制主要指面向共享内存的同步机制,比如排它锁、共享锁等。这两种情况导致的泄露还是比较常见的。go 由于 defer 的存在,第二类情况,一般情况下还是比较容易避免的。

chanel 引起的泄露

先说 channel,如果之前读过官方的那篇并发的文章,翻译版,你会发现 channel 的使用,一个不小心就泄露了。我们来具体总结下那些情况下可能导致。

发送不接收

我们知道,发送者一般都会配有相应的接收者。理想情况下,我们希望接收者总能接收完所有发送的数据,这样就不会有任何问题。但现实是,一旦接收者发生异常退出,停止继续接收上游数据,发送者就会被阻塞。这个情况在 前面说的文章 中有非常细致的介绍。

示例代码:

package main

import "time"

func gen(nums ...int) <-chan int {
    out := make(chan int)
    go func() {
        for _, n := range nums {
            out <- n
        }
        close(out)
    }()
    return out
}

func main() {
    defer func() {
        fmt.Println("the number of goroutines: ", runtime.NumGoroutine())
    }()

    // Set up the pipeline.
    out := gen(2, 3)

    for n := range out {
        fmt.Println(n)               // 2
        time.Sleep(5 * time.Second) // done thing, 可能异常中断接收
        if true { // if err != nil 
            break
        }
    }
}

例子中,发送者通过 out chan 向下游发送数据,main 函数接收数据,接收者通常会依据接收到的数据做一些具体的处理,这里用 Sleep 代替。如果这期间发生异常,导致处理中断,退出循环。gen 函数中启动的 goroutine 并不会退出。

如何解决?

此处的主要问题在于,当接收者停止工作,发送者并不知道,还在傻傻地向下游发送数据。故而,我们需要一种机制去通知发送者。我直接说答案吧,就不循渐进了。Go 可以通过 channel 的关闭向所有的接收者发送广播信息。

修改后的代码:

package main

import "time"

func gen(done chan struct{}, nums ...int) <-chan int {
    out := make(chan int)
    go func() {
        defer close(out)
        for _, n := range nums {
            select {
            case out <- n:
            case <-done:
                return
            }
        }
    }()
    return out
}

func main() {
    defer func() {
        time.Sleep(time.Second)
        fmt.Println("the number of goroutines: ", runtime.NumGoroutine())
    }()

    // Set up the pipeline.
    done := make(chan struct{})
    defer close(done)

    out := gen(done, 2, 3)

    for n := range out {
        fmt.Println(n) // 2
        time.Sleep(5 * time.Second) // done thing, 可能异常中断接收
        if true { // if err != nil 
            break
        }
    }
}

函数 gen 中通过 select 实现 2 个 channel 的同时处理。当异常发生时,将进入 <-done 分支,实现 goroutine 退出。这里为了演示效果,保证资源顺利释放,退出时等待了几秒保证释放完成。

执行后的输出如下:

the number of goroutines:  1

现在只有主 goroutine 存在。

接收不发送

发送不接收会导致发送者阻塞,反之,接收不发送也会导致接收者阻塞。直接看示例代码,如下:

package main

func main() {
    defer func() {
        time.Sleep(time.Second)
        fmt.Println("the number of goroutines: ", runtime.NumGoroutine())
    }()

    var ch chan struct{}
    go func() {
        ch <- struct{}{}
    }()
}

运行结果显示:

the number of goroutines:  2

当然,我们正常不会遇到这么傻的情况发生,现实工作中的案例更多可能是发送已完成,但是发送者并没有关闭 channel,接收者自然也无法知道发送完毕,阻塞因此就发生了。

解决方案是什么?那当然就是,发送完成后一定要记得关闭 channel。

nil channel

向 nil channel 发送和接收数据都将会导致阻塞。这种情况可能在我们定义 channel 时忘记初始化的时候发生。

示例代码:

func main() {
    defer func() {
        time.Sleep(time.Second)
        fmt.Println("the number of goroutines: ", runtime.NumGoroutine())
    }()

    var ch chan int
    go func() {
        <-ch
        // ch<-
    }()
}

两种写法:<-ch 和 ch<- 1,分别表示接收与发送,都将会导致阻塞。如果想实现阻塞,通过 nil channel 和 done channel 结合实现阻止 main 函数的退出,这或许是可以一试的方法。

func main() {
	defer func() {
		time.Sleep(time.Second)
		fmt.Println("the number of goroutines: ", runtime.NumGoroutine())
	}()

	done := make(chan struct{})

	var ch chan int
	go func() {
		defer close(done)
	}()

	select {
	case <-ch:
	case <-done:
		return
	}
}

在 goroutine 执行完成,检测到 done 关闭,main 函数退出。

真实的场景

真实的场景肯定不会像案例中的简单,可能涉及多阶段 goroutine 之间的协作,某个 goroutine 可能即使接收者又是发送者。但归根接底,无论什么使用模式。都是把基础知识组织在一起的合理运用。

传统同步机制

虽然,一般推荐 Go 并发数据的传递,但有些场景下,显然还是使用传统同步机制更合适。Go 中提供传统同步机制主要在 sync 和 atomic 两个包。接下来,我主要介绍的是锁和 WaitGroup 可能导致 goroutine 的泄露。

Mutex

和其他语言类似,Go 中存在两种锁,排它锁和共享锁,关于它们的使用就不作介绍了。我们以排它锁为例进行分析。

示例如下:

func main() {
    total := 0

    defer func() {
        time.Sleep(time.Second)
        fmt.Println("total: ", total)
        fmt.Println("the number of goroutines: ", runtime.NumGoroutine())
    }()

    var mutex sync.Mutex
    for i := 0; i < 2; i++ {
        go func() {
            mutex.Lock()
            total += 1
        }()
    }
}

执行结果如下:

total: 1
the number of goroutines: 2

这段代码通过启动两个 goroutine 对 total 进行加法操作,为防止出现数据竞争,对计算部分做了加锁保护,但并没有及时的解锁,导致 i = 1 的 goroutine 一直阻塞等待 i = 0 的 goroutine 释放锁。可以看到,退出时有 2 个 goroutine 存在,出现了泄露,total 的值为 1。

怎么解决?因为 Go 有 defer 的存在,这个问题还是非常容易解决的,只要记得在 Lock 的时候,记住 defer Unlock 即可。

示例如下:

mutex.Lock()
defer mutext.Unlock()

其他的锁与这里其实都是类似的。

WaitGroup

WaitGroup 和锁有所差别,它类似 Linux 中的信号量,可以实现一组 goroutine 操作的等待。使用的时候,如果设置了错误的任务数,也可能会导致阻塞,导致泄露发生。

一个例子,我们在开发一个后端接口时需要访问多个数据表,由于数据间没有依赖关系,我们可以并发访问,示例如下:

package main

import (
    "fmt"
    "runtime"
    "sync"
    "time"
)

func handle() {
    var wg sync.WaitGroup

    wg.Add(4)

    go func() {
        fmt.Println("访问表1")
        wg.Done()
    }()

    go func() {
        fmt.Println("访问表2")
        wg.Done()
    }()

    go func() {
        fmt.Println("访问表3")
        wg.Done()
    }()

    wg.Wait()
}

func main() {
    defer func() {
        time.Sleep(time.Second)
        fmt.Println("the number of goroutines: ", runtime.NumGoroutine())
    }()

    go handle()
    time.Sleep(time.Second)
}

执行结果如下:

the number of goroutines: 2

出现了泄露。再看代码,它的开始部分定义了类型为 sync.WaitGroup 的变量 wg,设置并发任务数为 4,但是从例子中可以看出只有 3 个并发任务。故最后的 wg.Wait() 等待退出条件将永远无法满足,handle 将会一直阻塞。

怎么防止这类情况发生?

我个人的建议是,尽量不要一次设置全部任务数,即使数量非常明确的情况。因为在开始多个并发任务之间或许也可能出现被阻断的情况发生。最好是尽量在任务启动时通过 wg.Add(1) 的方式增加。

示例如下:

    ...
    wg.Add(1)
    go func() {
        fmt.Println("访问表1")
        wg.Done()
    }()

    wg.Add(1)
    go func() {
        fmt.Println("访问表2")
        wg.Done()
    }()

    wg.Add(1)
    go func() {
        fmt.Println("访问表3")
        wg.Done()
    }()
    ...

总结

大概介绍完了我认为的所有可能导致 goroutine 泄露的情况。总结下来,其实无论是死循环、channel 阻塞、锁等待,只要是会造成阻塞的写法都可能产生泄露。因而,如何防止 goroutine 泄露就变成了如何防止发生阻塞。为进一步防止泄露,有些实现中会加入超时处理,主动释放处理时间太长的 goroutine。

本篇主要从如何写出正确代码的角度来介绍如何防止 goroutine 的泄露。下篇[https://juejin.im/post/5d3d76066fb9a07ee463aba0],将会介绍如何实现更好的监控检测,以帮助我们发现当前代码中已经存在的泄露。

到此,关于“Go如何防止goroutine泄露”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!


分享标题:Go如何防止goroutine泄露
链接URL:http://wjwzjz.com/article/jpeiog.html
在线咨询
服务热线
服务热线:028-86922220
TOP