新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
最近闲着没事,想把coursera上斯坦福ML课程里面的练习,用Python来实现一下,一是加深ML的基础,二是熟悉一下numpy,matplotlib,scipy这些库。
创新互联公司是一家专注于网站设计制作、成都网站建设与策划设计,南木林网站建设哪家好?创新互联公司做网站,专注于网站建设10余年,网设计领域的专业建站公司;建站业务涵盖:南木林等地区。南木林做网站价格咨询:18982081108在EX2中,优化theta使用了matlab里面的fminunc函数,不知道Python里面如何实现。搜索之后,发现stackflow上有人提到用scipy库里面的minimize函数来替代。我尝试直接调用我的costfunction和grad,程序报错,提示(3,)和(100,1)dim维度不等,gradient vector不对之类的,试了N多次后,终于发现问题何在。。
首先来看看使用np.info(minimize)查看函数的介绍,传入的参数有:
fun : callable The objective function to be minimized. ``fun(x, *args) -> float`` where x is an 1-D array with shape (n,) and `args` is a tuple of the fixed parameters needed to completely specify the function. x0 : ndarray, shape (n,) Initial guess. Array of real elements of size (n,), where 'n' is the number of independent variables. args : tuple, optional Extra arguments passed to the objective function and its derivatives (`fun`, `jac` and `hess` functions). method : str or callable, optional Type of solver. Should be one of - 'Nelder-Mead' :ref:`(see here)` - 'Powell' :ref:`(see here) ` - 'CG' :ref:`(see here) ` - 'BFGS' :ref:`(see here) ` - 'Newton-CG' :ref:`(see here) ` - 'L-BFGS-B' :ref:`(see here) ` - 'TNC' :ref:`(see here) ` - 'COBYLA' :ref:`(see here) ` - 'SLSQP' :ref:`(see here) ` - 'trust-constr':ref:`(see here) ` - 'dogleg' :ref:`(see here) ` - 'trust-ncg' :ref:`(see here) ` - 'trust-exact' :ref:`(see here) ` - 'trust-krylov' :ref:`(see here) ` - custom - a callable object (added in version 0.14.0), see below for description. If not given, chosen to be one of ``BFGS``, ``L-BFGS-B``, ``SLSQP``, depending if the problem has constraints or bounds. jac : {callable, '2-point', '3-point', 'cs', bool}, optional Method for computing the gradient vector. Only for CG, BFGS, Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg, trust-krylov, trust-exact and trust-constr. If it is a callable, it should be a function that returns the gradient vector: ``jac(x, *args) -> array_like, shape (n,)`` where x is an array with shape (n,) and `args` is a tuple with the fixed parameters. Alternatively, the keywords {'2-point', '3-point', 'cs'} select a finite difference scheme for numerical estimation of the gradient. Options '3-point' and 'cs' are available only to 'trust-constr'. If `jac` is a Boolean and is True, `fun` is assumed to return the gradient along with the objective function. If False, the gradient will be estimated using '2-point' finite difference estimation.
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。