新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
本篇文章为大家展示了Spark中分区器的作用是什么,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名注册、虚拟空间、营销软件、网站建设、白云鄂网站维护、网站推广。
在Spark中给自己挖了一个数据倾斜的坑。为了解决这个问题,顺便研究了下Spark分区器的原理,趁着周末加班总结一下~
先说说数据倾斜
数据倾斜是指Spark中的RDD在计算的时候,每个RDD内部的分区包含的数据不平均。比如一共有5个分区,其中一个占有了90%的数据,这就导致本来5个分区可以5个人一起并行干活,结果四个人不怎么干活,工作全都压到一个人身上了。遇到这种问题,网上有很多的解决办法。
但是如果是底层数据的问题,无论怎么优化,还是无法解决数据倾斜的。
比如你想要对某个rdd做groupby,然后做join操作,如果分组的key就是分布不均匀的,那么真样都是无法优化的。因为一旦这个key被切分,就无法完整的做join了,如果不对这个key切分,必然会造成对应的分区数据倾斜。
不过,了解数据为什么会倾斜还是很重要的,继续往下看吧!
分区的作用
在PairRDD即(key,value)这种格式的rdd中,很多操作都是基于key的,因此为了独立分割任务,会按照key对数据进行重组。比如groupbykey
重组肯定是需要一个规则的,最常见的就是基于Hash,Spark还提供了一种稍微复杂点的基于抽样的Range分区方法。
下面我们先看看分区器在Spark计算流程中是怎么使用的:
Paritioner的使用
就拿groupbykey来说:
def groupByKey(): JavaPairRDD[K, JIterable[V]] = fromRDD(groupByResultToJava(rdd.groupByKey()))
它会调用PairRDDFunction的groupByKey()方法
def groupByKey(): RDD[(K, Iterable[V])] = self.withScope { groupByKey(defaultPartitioner(self)) }
在这个方法里面创建了默认的分区器。默认的分区器是这样定义的:
def defaultPartitioner(rdd: RDD[_], others: RDD[_]*): Partitioner = { val bySize = (Seq(rdd) ++ others).sortBy(_.partitions.size).reverse for (r <- bySize if r.partitioner.isDefined && r.partitioner.get.numPartitions > 0) { return r.partitioner.get } if (rdd.context.conf.contains("spark.default.parallelism")) { new HashPartitioner(rdd.context.defaultParallelism) } else { new HashPartitioner(bySize.head.partitions.size) } }
首先获取当前分区的分区个数,如果没有设置spark.default.parallelism参数,则创建一个跟之前分区个数一样的Hash分区器。
当然,用户也可以自定义分区器,或者使用其他提供的分区器。API里面也是支持的:
// 传入分区器对象 def groupByKey(partitioner: Partitioner): JavaPairRDD[K, JIterable[V]] = fromRDD(groupByResultToJava(rdd.groupByKey(partitioner))) // 传入分区的个数 def groupByKey(numPartitions: Int): JavaPairRDD[K, JIterable[V]] = fromRDD(groupByResultToJava(rdd.groupByKey(numPartitions)))
HashPatitioner
Hash分区器,是最简单也是默认提供的分区器,了解它的分区规则,对我们处理数据倾斜或者设计分组的key时,还是很有帮助的。
class HashPartitioner(partitions: Int) extends Partitioner { require(partitions >= 0, s"Number of partitions ($partitions) cannot be negative.") def numPartitions: Int = partitions // 通过key计算其HashCode,并根据分区数取模。如果结果小于0,直接加上分区数。 def getPartition(key: Any): Int = key match { case null => 0 case _ => Utils.nonNegativeMod(key.hashCode, numPartitions) } // 对比两个分区器是否相同,直接对比其分区个数就行 override def equals(other: Any): Boolean = other match { case h: HashPartitioner => h.numPartitions == numPartitions case _ => false } override def hashCode: Int = numPartitions }
这里最重要的是这个Utils.nonNegativeMod(key.hashCode, numPartitions),它决定了数据进入到哪个分区。
def nonNegativeMod(x: Int, mod: Int): Int = { val rawMod = x % mod rawMod + (if (rawMod < 0) mod else 0) }
说白了,就是基于这个key获取它的hashCode,然后对分区个数取模。由于HashCode可能为负,这里直接判断下,如果小于0,再加上分区个数即可。
因此,基于hash的分区,只要保证你的key是分散的,那么最终数据就不会出现数据倾斜的情况。
RangePartitioner
这个分区器,适合想要把数据打散的场景,但是如果相同的key重复量很大,依然会出现数据倾斜的情况。
每个分区器,最核心的方法,就是getPartition
def getPartition(key: Any): Int = { val k = key.asInstanceOf[K] var partition = 0 if (rangeBounds.length <= 128) { // If we have less than 128 partitions naive search while (partition < rangeBounds.length && ordering.gt(k, rangeBounds(partition))) { partition += 1 } } else { // Determine which binary search method to use only once. partition = binarySearch(rangeBounds, k) // binarySearch either returns the match location or -[insertion point]-1 if (partition < 0) { partition = -partition-1 } if (partition > rangeBounds.length) { partition = rangeBounds.length } } if (ascending) { partition } else { rangeBounds.length - partition } }
在range分区中,会存储一个边界的数组,比如[1,100,200,300,400],然后对比传进来的key,返回对应的分区id。
那么这个边界是怎么确定的呢?
这就是Range分区最核心的算法了,大概描述下,就是遍历每个paritiion,对里面的数据进行抽样,把抽样的数据进行排序,并按照对应的权重确定边界。
有几个比较重要的地方:
1 抽样
2 确定边界
关于抽样,有一个很常见的算法题,即在不知道数据规模的情况下,如何以等概率的方式,随机选择一个值。
最笨的办法,就是遍历一次数据,知道数据的规模,然后随机一个数,取其对应的值。其实这样相当于遍历了两次(第二次的取值根据不同的存储介质,可能不同)。
在Spark中,是使用水塘抽样这种算法。即首先取***个值,然后依次往后遍历;第二个值有二分之一的几率替换选出来的值;第三个值有三分之一的几率替换选出来的值;…;直到遍历到***一个值。这样,通过依次遍历就取出来随机的数值了。
算法参考源码:
private var rangeBounds: Array[K] = { if (partitions <= 1) { Array.empty } else { // This is the sample size we need to have roughly balanced output partitions, capped at 1M. // ***采样数量不能超过1M。比如,如果分区是5,采样数为100 val sampleSize = math.min(20.0 * partitions, 1e6) // Assume the input partitions are roughly balanced and over-sample a little bit. // 每个分区的采样数为平均值的三倍,避免数据倾斜造成的数据量过少 val sampleSizePerPartition = math.ceil(3.0 * sampleSize / rdd.partitions.size).toInt // 真正的采样算法(参数1:rdd的key数组, 采样个数) val (numItems, sketched) = RangePartitioner.sketch(rdd.map(_._1), sampleSizePerPartition) if (numItems == 0L) { Array.empty } else { // If a partition contains much more than the average number of items, we re-sample from it // to ensure that enough items are collected from that partition. // 如果有的分区包含的数量远超过平均值,那么需要对它重新采样。每个分区的采样数/采样返回的总的记录数 val fraction = math.min(sampleSize / math.max(numItems, 1L), 1.0) //保存有效的采样数 val candidates = ArrayBuffer.empty[(K, Float)] //保存数据倾斜导致的采样数过多的信息 val imbalancedPartitions = mutable.Set.empty[Int] sketched.foreach { case (idx, n, sample) => if (fraction * n > sampleSizePerPartition) { imbalancedPartitions += idx } else { // The weight is 1 over the sampling probability. val weight = (n.toDouble / sample.size).toFloat for (key <- sample) { candidates += ((key, weight)) } } } if (imbalancedPartitions.nonEmpty) { // Re-sample imbalanced partitions with the desired sampling probability. val imbalanced = new PartitionPruningRDD(rdd.map(_._1), imbalancedPartitions.contains) val seed = byteswap32(-rdd.id - 1) //基于RDD获取采样数据 val reSampled = imbalanced.sample(withReplacement = false, fraction, seed).collect() val weight = (1.0 / fraction).toFloat candidates ++= reSampled.map(x => (x, weight)) } RangePartitioner.determineBounds(candidates, partitions) } } } def sketch[K : ClassTag]( rdd: RDD[K], sampleSizePerPartition: Int): (Long, Array[(Int, Long, Array[K])]) = { val shift = rdd.id // val classTagK = classTag[K] // to avoid serializing the entire partitioner object val sketched = rdd.mapPartitionsWithIndex { (idx, iter) => val seed = byteswap32(idx ^ (shift << 16)) val (sample, n) = SamplingUtils.reservoirSampleAndCount( iter, sampleSizePerPartition, seed) //包装成三元组,(索引号,分区的内容个数,抽样的内容) Iterator((idx, n, sample)) }.collect() val numItems = sketched.map(_._2).sum //返回(数据条数,(索引号,分区的内容个数,抽样的内容)) (numItems, sketched) }
真正的抽样算法在SamplingUtils中,由于在Spark中是需要一次性取多个值的,因此直接去前n个数值,然后依次概率替换即可:
def reservoirSampleAndCount[T: ClassTag]( input: Iterator[T], k: Int, seed: Long = Random.nextLong()) : (Array[T], Long) = { //创建临时数组 val reservoir = new Array[T](k) // Put the first k elements in the reservoir. // 取出前k个数,并把对应的rdd中的数据放入对应的序号的数组中 var i = 0 while (i < k && input.hasNext) { val item = input.next() reservoir(i) = item i += 1 } // If we have consumed all the elements, return them. Otherwise do the replacement. // 如果全部的元素,比要抽取的采样数少,那么直接返回 if (i < k) { // If input size < k, trim the array to return only an array of input size. val trimReservoir = new Array[T](i) System.arraycopy(reservoir, 0, trimReservoir, 0, i) (trimReservoir, i) // 否则开始抽样替换 } else { // If input size > k, continue the sampling process. // 从刚才的序号开始,继续遍历 var l = i.toLong // 随机数 val rand = new XORShiftRandom(seed) while (input.hasNext) { val item = input.next() // 随机一个数与当前的l相乘,如果小于采样数k,就替换。(越到后面,替换的概率越小...) val replacementIndex = (rand.nextDouble() * l).toLong if (replacementIndex < k) { reservoir(replacementIndex.toInt) = item } l += 1 } (reservoir, l) } }
确定边界
最后就可以通过获取的样本数据,确定边界了。
def determineBounds[K : Ordering : ClassTag]( candidates: ArrayBuffer[(K, Float)], partitions: Int): Array[K] = { val ordering = implicitly[Ordering[K]] // 数据格式为(key,权重) val ordered = candidates.sortBy(_._1) val numCandidates = ordered.size val sumWeights = ordered.map(_._2.toDouble).sum val step = sumWeights / partitions var cumWeight = 0.0 var target = step val bounds = ArrayBuffer.empty[K] var i = 0 var j = 0 var previousBound = Option.empty[K] while ((i < numCandidates) && (j < partitions - 1)) { val (key, weight) = ordered(i) cumWeight += weight if (cumWeight >= target) { // Skip duplicate values. if (previousBound.isEmpty || ordering.gt(key, previousBound.get)) { bounds += key target += step j += 1 previousBound = Some(key) } } i += 1 } bounds.toArray }
直接看代码,还是有些晦涩难懂,我们举个例子,一步一步解释下:
按照上面的算法流程,大致可以理解:
抽样-->确定边界(排序)
首先对spark有一定了解的都应该知道,在spark中每个RDD可以理解为一组分区,这些分区对应了内存块block,他们才是数据最终的载体。那么一个RDD由不同的分区组成,这样在处理一些map,filter等算子的时候,就可以直接以分区为单位并行计算了。直到遇到shuffle的时候才需要和其他的RDD配合。
在上面的图中,如果我们不特殊设置的话,一个RDD由3个分区组成,那么在对它进行groupbykey的时候,就会按照3进行分区。
按照上面的算法流程,如果分区数为3,那么采样的大小为:
val sampleSize = math.min(20.0 * partitions, 1e6)
即采样数为60,每个分区取60个数。但是考虑到数据倾斜的情况,有的分区可能数据很多,因此在实际的采样时,会按照3倍大小采样:
val sampleSizePerPartition = math.ceil(3.0 * sampleSize / rdd.partitions.size).toInt
也就是说,最多会取60个样本数据。
然后就是遍历每个分区,取对应的样本数。
val sketched = rdd.mapPartitionsWithIndex { (idx, iter) => val seed = byteswap32(idx ^ (shift << 16)) val (sample, n) = SamplingUtils.reservoirSampleAndCount( iter, sampleSizePerPartition, seed) //包装成三元组,(索引号,分区的内容个数,抽样的内容) Iterator((idx, n, sample)) }.collect()
然后检查,是否有分区的样本数过多,如果多于平均值,则继续采样,这时直接用sample 就可以了
sketched.foreach { case (idx, n, sample) => if (fraction * n > sampleSizePerPartition) { imbalancedPartitions += idx } else { // The weight is 1 over the sampling probability. val weight = (n.toDouble / sample.size).toFloat for (key <- sample) { candidates += ((key, weight)) } } } if (imbalancedPartitions.nonEmpty) { // Re-sample imbalanced partitions with the desired sampling probability. val imbalanced = new PartitionPruningRDD(rdd.map(_._1), imbalancedPartitions.contains) val seed = byteswap32(-rdd.id - 1) //基于RDD获取采样数据 val reSampled = imbalanced.sample(withReplacement = false, fraction, seed).collect() val weight = (1.0 / fraction).toFloat candidates ++= reSampled.map(x => (x, weight)) }
取出样本后,就到了确定边界的时候了。
注意每个key都会有一个权重,这个权重是 【分区的数据总数/样本数】
RangePartitioner.determineBounds(candidates, partitions)
首先排序val ordered = candidates.sortBy(_._1),然后确定一个权重的步长
val sumWeights = ordered.map(_._2.toDouble).sum val step = sumWeights / partitions
基于该步长,确定边界,***就形成了几个范围数据。
然后分区器形成二叉树,遍历该数确定每个key对应的分区id
partition = binarySearch(rangeBounds, k)
实践 —— 自定义分区器
自定义分区器,也是很简单的,只需要实现对应的两个方法就行:
public class MyPartioner extends Partitioner { @Override public int numPartitions() { return 1000; } @Override public int getPartition(Object key) { String k = (String) key; int code = k.hashCode() % 1000; System.out.println(k+":"+code); return code < 0?code+1000:code; } @Override public boolean equals(Object obj) { if(obj instanceof MyPartioner){ if(this.numPartitions()==((MyPartioner) obj).numPartitions()){ return true; } return false; } return super.equals(obj); } }
使用的时候,可以直接new一个对象即可。
pairRdd.groupbykey(new MyPartitioner())
上述内容就是Spark中分区器的作用是什么,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注创新互联行业资讯频道。