新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
使用缓存,比如memcache,redis,因为它们是在内存中运行,所以处理数据,返回数据非常快,所以可以应对高并发。
创新互联专注于灌南企业网站建设,响应式网站设计,商城建设。灌南网站建设公司,为灌南等地区提供建站服务。全流程按需制作,专业设计,全程项目跟踪,创新互联专业和态度为您提供的服务
2.增加带宽和机器性能,1M的带宽同时处理的流量肯定有限,所以在资源允许的情况下,大带宽,多核cpu,高内存是一个解决方案。
3.分布式,让多个访问分到不同的机器上去处理,每个机器处理的请求就相对减少了。
简单说些常用技术,负载均衡,限流,加速器等
mysql_query函数查询的方式是查询出全部结果后缓存到内存中,这样就会出现超内存的现象,使用另外一个函数mysql_unbuffered_query可以解决这个问题,mysql_unbuffered_query不会缓存结果集,而是查询出来数据后立马对结果集进行操作,也就是便查询边返回,这样就不会出现超出内存的现象,但是使用mysql_unbuffered_query的是时候不能使用 mysql_num_rows() 和 mysql_data_seek()。并且向 MySQL 发送一条新的 SQL 查询之前,必须提取掉所有未缓存的 SQL 查询所产生的结果行。例如:
使用缓存结果集的代码:
function selecttest()
{
try {
$pdo = new PDO("mysql:host=localhost;dbname=test", 'root', '123456');
// 不使用缓存结果集方式
// $pdo-setAttribute(PDO::MYSQL_ATTR_USE_BUFFERED_QUERY, false);
$sth = $pdo-prepare('select * from test');
$sth-execute();
echo '最初占用内存大小:' . memory_get_usage() . "\n";
$i = 0;
while ($result = $sth-fetch(PDO::FETCH_ASSOC)) {
$i += 1;
if ($i 10) {
break;
}
sleep(1);
print_r($result);
echo '占用内存大小:' . memory_get_usage() . "\n";
}
} catch (Exception $e) {
echo $e-getMessage();
}
}
执行时将会报超出内存的错误:
Fatal error: Allowed memory size of 134217728 bytes exhausted (tried to allocate 204800000 bytes) in E:\ProgramDevelopment\RuntimeEnvironment\xampp\htdocs\test\test.php on line 56
Call Stack:
0.0005 135392 1. {main}() E:\ProgramDevelopment\RuntimeEnvironment\xampp\htdocs\test\test.php:0
0.0005 135568 2. test-selecttest() E:\ProgramDevelopment\RuntimeEnvironment\xampp\htdocs\test\test.php:85
0.0050 142528 3. PDOStatement-execute() E:\ProgramDevelopment\RuntimeEnvironment\xampp\htdocs\test\test.php:56
将上面代码中的$pdo-setAttribute(PDO::MYSQL_ATTR_USE_BUFFERED_QUERY, false);一行的注释去掉后将不在缓存结果集,这时运行该函数的结果如下:
最初占用内存大小:144808
Array
(
[id] = 1
[a] = v
[b] = w
[c] = i
)
占用内存大小:145544
Array
(
[id] = 2
[a] = b
[b] = l
[c] = q
)
占用内存大小:145544
Array
(
[id] = 3
[a] = m
[b] = p
[c] = h
)
占用内存大小:145536
Array
(
[id] = 4
[a] = j
[b] = i
[c] = b
)
占用内存大小:145536
可以看到,这时返回一条数据内存占用非常的小,也就700多字节,这样就不会出现超出内存的错误了。
大数据的话可以进行以下操作:
减少对数据库的读取,也就是减少调用数据库,
进行数据缓存,
利用数据库的自身优化技术,如索引等
精确查询条件,有利于提高查找速度