新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
1. 部署简单
创新互联是一家业务范围包括IDC托管业务,雅安服务器托管、主机租用、主机托管,四川、重庆、广东电信服务器租用,达州服务器托管,成都网通服务器托管,成都服务器租用,业务范围遍及中国大陆、港澳台以及欧美等多个国家及地区的互联网数据服务公司。
Go
编译生成的是一个静态可执行文件,除了glibc外没有其他外部依赖。这让部署变得异常方便:目标机器上只需要一个基础的系统和必要的管理、监控工具,完全不需要操心应用所需的各种包、库的依赖关系,大大减轻了维护的负担。
2. 并发性好
Goroutine和channel使得编写高并发的服务端软件变得相当容易,很多情况下完全不需要考虑锁机制以及由此带来的各种问题。单个Go应用也能有效的利用多个CPU核,并行执行的性能好。
3. 良好的语言设计
从学术的角度讲Go语言其实非常平庸,不支持许多高级的语言特性;但从工程的角度讲,Go的设计是非常优秀的:规范足够简单灵活,有其他语言基础的程序员都能迅速上手。更重要的是
Go 自带完善的工具链,大大提高了团队协作的一致性。
4. 执行性能好
虽然不如 C 和 Java,但相比于其他编程语言,其执行性能还是很好的,适合编写一些瓶颈业务,内存占用也非常省。
前段时间在golang-China读到这个贴:
个人觉得golang十分适合进行网游服务器端开发,写下这篇文章总结一下。
从网游的角度看:
要成功的运营一款网游,很大程度上依赖于玩家自发形成的社区。只有玩家自发形成一个稳定的生态系统,游戏才能持续下去,避免鬼城的出现。而这就需要多次大量导入用户,在同时在线用户量达到某个临界点的时候,才有可能完成。因此,多人同时在线十分有必要。
再来看网游的常见玩法,除了排行榜这类统计和数据汇总的功能外,基本没有需要大量CPU时间的应用。以前的项目里,即时战斗产生的各种伤害计算对CPU的消耗也不大。玩家要完成一次操作,需要通过客户端-服务器端-客户端这样一个来回,为了获得高响应速度,满足玩家体验,服务器端的处理也不能占用太多时间。所以,每次请求对应的CPU占用是比较小的。
网游的IO主要分两个方面,一个是网络IO,一个是磁盘IO。网络IO方面,可以分成美术资源的IO和游戏逻辑指令的IO,这里主要分析游戏逻辑的IO。游戏逻辑的IO跟CPU占用的情况相似,每次请求的字节数很小,但由于多人同时在线,因此并发数相当高。另外,地图信息的广播也会带来比较频繁的网络通信。磁盘IO方面,主要是游戏数据的保存。采用不同的数据库,会有比较大的区别。以前的项目里,就经历了从MySQL转向MongoDB这种内存数据库的过程,磁盘IO不再是瓶颈。总体来说,还是用内存做一级缓冲,避免大量小数据块读写的方案。
针对网游的这些特点,golang的语言特性十分适合开发游戏服务器端。
首先,go语言提供goroutine机制作为原生的并发机制。每个goroutine所需的内存很少,实际应用中可以启动大量的goroutine对并发连接进行响应。goroutine与gevent中的greenlet很相像,遇到IO阻塞的时候,调度器就会自动切换到另一个goroutine执行,保证CPU不会因为IO而发生等待。而goroutine与gevent相比,没有了python底层的GIL限制,就不需要利用多进程来榨取多核机器的性能了。通过设置最大线程数,可以控制go所启动的线程,每个线程执行一个goroutine,让CPU满负载运行。
同时,go语言为goroutine提供了独到的通信机制channel。channel发生读写的时候,也会挂起当前操作channel的goroutine,是一种同步阻塞通信。这样既达到了通信的目的,又实现同步,用CSP模型的观点看,并发模型就是通过一组进程和进程间的事件触发解决任务的。虽然说,主流的编程语言之间,只要是图灵完备的,他们就都能实现相同的功能。但go语言提供的这种协程间通信机制,十分优雅地揭示了协程通信的本质,避免了以往锁的显式使用带给程序员的心理负担,确是一大优势。进行网游开发的程序员,可以将游戏逻辑按照单线程阻塞式的写,不需要额外考虑线程调度的问题,以及线程间数据依赖的问题。因为,线程间的channel通信,已经表达了线程间的数据依赖关系了,而go的调度器会给予妥善的处理。
另外,go语言提供的gc机制,以及对指针的保护式使用,可以大大减轻程序员的开发压力,提高开发效率。
展望未来,我期待go语言社区能够提供更多的goroutine间的隔离机制。个人十分推崇erlang社区的脆崩哲学,推动应用发生预期外行为时,尽早崩溃,再fork出新进程处理新的请求。对于协程机制,需要由程序员保证执行的函数不会发生死循环,导致线程卡死。如果能够定制goroutine所执行函数的最大CPU执行时间,及所能使用的最大内存空间,对于提升系统的鲁棒性,大有裨益。
部署简单。Go编译生成的是一个静态可执行文件,除了glibc外没有其他外部依赖。这让部署变得异常方便:目标机器上只需要一个基础的系统和必要的管理、监控工具,完全不需要操心应用所需的各种包、库的依赖关系,大大减轻了维护的负担。这和Python有着巨大的区别。由于历史的原因,Python的部署工具生态相当混乱【比如setuptools,distutils,pip,
buildout的不同适用场合以及兼容性问题】。官方PyPI源又经常出问题,需要搭建私有镜像,而维护这个镜像又要花费不少时间和精力。
并发性好。Goroutine和channel使得编写高并发的服务端软件变得相当容易,很多情况下完全不需要考虑锁机制以及由此带来的各种问题。单个Go应用也能有效的利用多个CPU核,并行执行的性能好。这和Python也是天壤之比。多线程和多进程的服务端程序编写起来并不简单,而且由于全局锁GIL的原因,多线程的Python程序并不能有效利用多核,只能用多进程的方式部署;如果用标准库里的multiprocessing包又会对监控和管理造成不少的挑战【我们用的supervisor管理进程,对fork支持不好】。部署Python应用的时候通常是每个CPU核部署一个应用,这会造成不少资源的浪费,比如假设某个Python应用启动后需要占用100MB内存,而服务器有32个CPU核,那么留一个核给系统、运行31个应用副本就要浪费3GB的内存资源。
良好的语言设计。从学术的角度讲Go语言其实非常平庸,不支持许多高级的语言特性;但从工程的角度讲,Go的设计是非常优秀的:规范足够简单灵活,有其他语言基础的程序员都能迅速上手。更重要的是Go自带完善的工具链,大大提高了团队协作的一致性。比如gofmt自动排版Go代码,很大程度上杜绝了不同人写的代码排版风格不一致的问题。把编辑器配置成在编辑存档的时候自动运行gofmt,这样在编写代码的时候可以随意摆放位置,存档的时候自动变成正确排版的代码。此外还有gofix,
govet等非常有用的工具。
执行性能好。虽然不如C和Java,但通常比原生Python应用还是高一个数量级的,适合编写一些瓶颈业务。内存占用也非常省。
【译文】 原文地址
channel是Go语言的一个标志性特性,为go协程之间的数据交互提供一种非常强大的方式,而不需要使用锁机制。
本文将讨论channel的两个重要属性,一个是控制协程间数据发送和接收,以及对channel本身控制。
首先讨论下关闭的channel特性。一旦channel被关闭之后,就不能再继续发送数据给该channel,但是还是可以继续接收channel中的数据。如下所示:
output:
上述例子显示即使ch在for循环之前已经关闭,但还是可以正常的读取缓存中的true值,读完之后ok就会被赋值为false表示channel已经关闭,而且value值为对应channel类型bool的默认零值false。只要不停地从关闭的channel接收,就会无限的返回默认值和false。可以将for循环次数改大点试试即可验证。
通过以上例子可以发现,关闭的channel可以继续接收读取操作,这种特征是有用的。在使用range读取带缓存的channel时就会用到,一旦channel关闭,读取完缓存中数据就会停止接收数据退出。
将前面的例子改为如下:
output:
上面的例子就没有false打出来了。正好是写入channel里面的两个值。
channel与select结合更能发挥出其作用,让我们看一个例子:
上面的例子,因为finish在主协程中发送之后,马上就会在select中接收,并执行done.Done()。主协程wait马上会退出整个程序就结束。但是这里面存在一个问题,如果在select中没有添加finish case的话,主协程就永远发送不了数据到finish这个channel,因为其不带缓存。这里就可以通过将finish改成带缓存的channel,或者可以让select中的finish不会阻塞。
但是出现多个协程都在接收finish通道中的数据的话,就需要发送对应协程数量的值到channel中才能解决上面的问题。但是具体有多少个协程这往往是不好确定的,因为有些协程可能是程序其他部分创建的。一个比较好的选择就是通过使用关闭通道的方法来实现各协程能正常接收并结束。
如下所示:
output:
上面的例子就是使用了关闭的channel可以无限地接收到反馈数据。这样每个协程都能从finish通道中读到关闭信息并执行done.Done()使得主协程wait能退出。并且不需要关注多少个协程数,就能正确的让所有协程读到finish通道信息。
channel的这个特性,可以让程序员无需关注后台具体执行协程个数,确保每个协程都能接收到通道关闭信息,而无需担心死锁问题。
通过上面的例子我们也发现每个协程并不需要从通道中读取对应类型的数据,只需让接收操作能执行就行,让select不被阻塞。所以可以使用空结构体类型,我们可以改成如下:
这里我们只关注通道是否关闭这个信号,而不需要关注通道里面的数据,所以可使用空结构体类型通道。
第二个要讨论的是nil通道:如果定义了一个channel变量没有被初始化,或者被赋值为nil,那么该chennel总是处于阻塞状态。如下所示:
执行结果为:
因为channel为nil无法发送数据,当然也不能接收数据:
这个似乎看起来不是很重要,但是如果你想使用关闭channel来等待多个channel关闭的话,这个特性就有用处了。先看下面的例子:
WaitMany()函数看起来好像是一个等待通道a和b关闭的好方法,但是存在一个问题。假设a通道先关闭,case -a就会变成非阻塞。因为bclosed还是false,程序就会进入到一个死循环当中,导致b通道永远无法确认关闭。
一个安全的方法就是使用nil通道总是阻塞的特点,如下所示:
上面的例子我们在WaitMany函数当中,当a或者b关闭时,case可执行了将对应的通道赋值为nil,让其阻塞这样就可以等待另一个通道关闭。当nil通道是select语句的一部分时,它会被有效地忽略,因此nil通道a会从select中删除它,只留下b,直到它被关闭,退出循环。
总之,closed和nil通道的简单属性对写出优质的go程序是很有用的,可以用来创建高并发程序。