新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
基于Gabor特征提取和人工智能的人脸检测系统源代码Face Detection System
宁陕网站制作公司哪家好,找创新互联!从网页设计、网站建设、微信开发、APP开发、自适应网站建设等网站项目制作,到程序开发,运营维护。创新互联公司2013年成立到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选创新互联。
这是一个使用了Gabor特征提取和人工智能的人脸检测系统源代码关键内容
使用步骤:
1. 拷贝所有文件到MATLAB工作目录下(确认已经安装了图像处理工具箱和人工智能工具箱)
2. 找到"main.m"文件
3. 命令行中运行它
4. 点击"Train Network",等待程序训练好样本
5. 点击"Test on Photos",选择一个.jpg图片,识别。
6. 等待程序检测出人脸区域
createffnn.m, drawrec.m, gabor.m, im2vec.m, imscan.m, loadimages.m, main.m, template1.png, template2.png, trainnet.m
no jniopencv_objdetect in java.library.path
opencv的相应的dll,没有放到环境变量PATH 所指的目录
1.环境搭建
整个项目的结构图
2.编写DetectFaceDemo.java,代码如下:
[java] view plaincopy
package com.njupt.zhb.test;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.highgui.Highgui;
import org.opencv.objdetect.CascadeClassifier;
//
// Detects faces in an image, draws boxes around them, and writes the results
// to "faceDetection.png".
//
public class DetectFaceDemo {
public void run() {
System.out.println("\nRunning DetectFaceDemo");
System.out.println(getClass().getResource("lbpcascade_frontalface.xml").getPath());
// Create a face detector from the cascade file in the resources
// directory.
//CascadeClassifier faceDetector = new CascadeClassifier(getClass().getResource("lbpcascade_frontalface.xml").getPath());
//Mat image = Highgui.imread(getClass().getResource("lena.png").getPath());
//注意:源程序的路径会多打印一个‘/’,因此总是出现如下错误
/*
* Detected 0 faces Writing faceDetection.png libpng warning: Image
* width is zero in IHDR libpng warning: Image height is zero in IHDR
* libpng error: Invalid IHDR data
*/
//因此,我们将第一个字符去掉
String xmlfilePath=getClass().getResource("lbpcascade_frontalface.xml").getPath().substring(1);
CascadeClassifier faceDetector = new CascadeClassifier(xmlfilePath);
Mat image = Highgui.imread(getClass().getResource("we.jpg").getPath().substring(1));
// Detect faces in the image.
// MatOfRect is a special container class for Rect.
MatOfRect faceDetections = new MatOfRect();
faceDetector.detectMultiScale(image, faceDetections);
System.out.println(String.format("Detected %s faces", faceDetections.toArray().length));
// Draw a bounding box around each face.
for (Rect rect : faceDetections.toArray()) {
Core.rectangle(image, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.height), new Scalar(0, 255, 0));
}
// Save the visualized detection.
String filename = "faceDetection.png";
System.out.println(String.format("Writing %s", filename));
Highgui.imwrite(filename, image);
}
}
3.编写测试类:
[java] view plaincopy
package com.njupt.zhb.test;
public class TestMain {
public static void main(String[] args) {
System.out.println("Hello, OpenCV");
// Load the native library.
System.loadLibrary("opencv_java246");
new DetectFaceDemo().run();
}
}
//运行结果:
//Hello, OpenCV
//
//Running DetectFaceDemo
///E:/eclipse_Jee/workspace/JavaOpenCV246/bin/com/njupt/zhb/test/lbpcascade_frontalface.xml
//Detected 8 faces
//Writing faceDetection.png
应该可以通过java调用别人的人脸识别的接口,主要是利用图像处理的技术,识别关键点
完整代码如下:
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Toolkit;
import javax.swing.JFrame;
public class Face extends JFrame {
/**
*
*/
private static final long serialVersionUID = 1L;
public Face(){
setSize(500, 500);
setResizable(false);
setDefaultCloseOperation(EXIT_ON_CLOSE);
Dimension screenSize = Toolkit.getDefaultToolkit()
.getScreenSize();
Dimension frameSize = getSize();
setLocation((screenSize.width - frameSize.width) / 2,
(screenSize.height - frameSize.height) / 2);
setVisible(true);
}
//下面的是关键的绘图代码
public void paint(Graphics g){
//画头
g.drawOval(100, 50, 300, 400);
//画眼睛
g.drawOval(140, 150, 100, 50);
g.drawOval(260, 150, 100, 50);
//画鼻子
g.drawArc(140, 150, 100, 150, -90, 90);
g.drawArc(260, 150, 100, 150, 180, 90);
//画嘴巴
g.drawOval(170, 320, 150, 50);
}
public static void main(String args[]){
new Face();
}
}
主要是用了几个java的画图函数,如果有用的话,希望采纳
基于弹性模板匹配的人脸表情识别程序。首先针对静态表情图像进行表情图像的灰度、尺寸归一化,然后利用Gabor小波变换提取人脸表情特征以构造表情弹性图,最后提出基于弹性模板匹配及K-近邻的分类算法实现人脸表情的识别。