新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
阿里云致力于以在线公共服务的方式,提供安全、可靠的计算和数据处理能力,让计算和人工智能成为普惠科技。
创新互联专业为企业提供龙子湖网站建设、龙子湖做网站、龙子湖网站设计、龙子湖网站制作等企业网站建设、网页设计与制作、龙子湖企业网站模板建站服务,10年龙子湖做网站经验,不只是建网站,更提供有价值的思路和整体网络服务。
阿里云服务着制造、金融、政务、交通、医疗、电信、能源等众多领域的领军企业,包括中国联通、12306、中石化、中石油、飞利浦、华大基因等大型企业客户,以及微博、知乎、锤子科技等明星互联网公司。在天猫双11全球狂欢节、12306春运购票等极富挑战的应用场景中,阿里云保持着良好的运行纪录。
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。
扩展资料:
阿里云主要产品:
1、弹性计算:
云服务器ECS:可弹性扩展、安全、稳定、易用的计算服务
块存储:可弹性扩展、高性能、高可靠的块级随机存储
专有网络VPC:帮您轻松构建逻辑隔离的专有网络
负载均衡:对多台云服务器进行流量分发的负载均衡服务
弹性伸缩:自动调整弹性计算资源的管理服务
资源编排:批量创建、管理、配置云计算资源
容器服务:应用全生命周期管理的Docker服务
高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机
批量计算:简单易用的大规模并行批处理计算服务
E-MapReduce:基于Hadoop/Spark的大数据处理分析服务
2、数据库:
云数据库RDS:完全兼容MySQL,SQLServer,PostgreSQL
云数据库MongoDB版:三节点副本集保证高可用
云数据库Redis版:兼容开源Redis协议的Key-Value类型
云数据库Memcache版:在线缓存服务,为热点数据的访问提供高速响应
PB级云数据库PetaData:支持PB级海量数据存储的分布式关系型数据库
云数据库HybridDB:基于GreenplumDatabase的MPP数据仓库
云数据库OceanBase:金融级高可靠、高性能、分布式自研数据库
数据传输:比GoldenGate更易用,阿里异地多活基础架构
数据管理:比phpMyadmin更强大,比Navicat更易用
3、存储:
对象存储OSS:海量、安全和高可靠的云存储服务
文件存储:无限扩展、多共享、标准文件协议的文件存储服务
归档存储:海量数据的长期归档、备份服务
块存储:可弹性扩展、高性能、高可靠的块级随机存储
表格存储:高并发、低延时、无限容量的Nosql数据存储服务
4、网络:
CDN:跨运营商、跨地域全网覆盖的网络加速服务
专有网络VPC:帮您轻松构建逻辑隔离的专有网络
高速通道:高速稳定的VPC互联和专线接入服务
NAT网关:支持NAT转发、共享带宽的VPC网关
2018年6月20日,阿里云宣布联合三大运营商全面对外提供IPv6服务。
5、大数据:
MaxCompute:原名ODPS,是一种快速、完全托管的TB/PB级数据仓库解决方案。
QuickBI:高效数据分析与展现平台,通过对数据源的连接,和数据集的创建,对数据进行即席的分析与查询。并通过电子表格或仪表板功能,以拖拽的方式进行数据的可视化呈现。
大数据开发套件:提供可视化开发界面、离线任务调度运维、快速数据集成、多人协同工作等功能,拥有强大的OpenAPI为数据应用开发者提供良好的再创作生态
DataV数据可视化:专精于业务数据与地理信息融合的大数据可视化,通过图形界面轻松搭建专业的可视化应用,满足您日常业务监控、调度、会展演示等多场景使用需求
关系网络分析:基于关系网络的大数据可视化分析平台,针对数据情报侦察场景赋能,如打击虚假交易,审理保险骗赔,案件还原研判等
推荐引擎:推荐服务框架,用于实时预测用户对物品偏好,支持A/BTest效果对比
公众趋势分析:利用语义分析、情感算法和机器学习,分析公众对品牌形象、热点事件和公共政策的认知趋势
企业图谱:提供企业多维度信息查询,方便企业构建基于企业画像及企业关系网络的风险控制、市场监测等企业级服务
数据集成:稳定高效、弹性伸缩的数据同步平台,为阿里云各个云产品提供离线(批量)数据进出通道
分析型数据库:在毫秒级针对千亿级数据进行即时的多维分析透视和业务探索
流计算:流式大数据分析平台,提供给用户在云上进行流式数据实时化分析工具
6、人工智能:
机器学习:基于阿里云分布式计算引擎的一款机器学习算法平台,用户通过拖拉拽的方式可视化的操作组件来进行试验,平台提供了丰富的组件,包括数据预处理、特征工程、算法组件、预测与评估
语音识别与合成:基于语音识别、语音合成、自然语言理解等技术,为企业在多种实际应用场景下,赋予产品“能听、会说、懂你”式的智能人机交互体验
人脸识别:提供图像和视频帧中人脸分析的在线服务,包括人脸检测、人脸特征提取、人脸年龄估计和性别识别、人脸关键点定位等独立服务模块
印刷文字识别:将图片中的文字识别出来,包括身份证文字识别、门店招牌识别、行驶证识别、驾驶证识别、名片识别等证件类文字识别场景
7、云安全:
服务器安全(安骑士):由轻量级Agent和云端组成,集检测、修复、防御为一体,提供网站后门查杀、通用Web软件0day漏洞修复、安全基线巡检、主机访问控制等功能,保障服务器安全
DDoS高防IP:云盾DDoS高防IP是针对互联网服务器(包括非阿里云主机)在遭受大流量的DDoS攻击后导致服务不可用的情况下,推出的付费增值服务,用户可以通过配置高防IP,将攻击流量引流到高防IP,确保源站的稳定可靠
Web应用防火墙:网站必备的一款安全防护产品。通过分析网站的访问请求、过滤异常攻击,保护网站业务可用及资产数据安全
加密服务:满足云上数据加密,密钥管理、加解密运算需求的数据安全解决方案
CA证书服务:云上签发Symantec、CFCA、GeoTrustSSL数字证书,部署简单,轻松实现全站HTTPS化,防监听、防劫持,呈现给用户可信的网站访问
数据风控:凝聚阿里多年业务风控经验,专业、实时对抗垃圾注册、刷库撞库、活动作弊、论坛灌水等严重威胁互联网业务安全的风险
绿网:智能识别文本、图片、视频等多媒体的内容违规风险,如涉黄,暴恐,涉政等,省去90%人力成本
安全管家:基于阿里云多年安全实践经验为云上用户提供的全方位安全技术和咨询服务,为云上用户建立和持续优化云安全防御体系,保障用户业务安全
云盾混合云:在用户自有IDC、专有云、公共云、混合云等多种业务环境为用户建设涵盖网络安全、应用安全、主机安全、安全态势感知的全方位互联网安全攻防体系
态势感知:安全大数据分析平台,通过机器学习和结合全网威胁情报,发现传统防御软件无法覆盖的网络威胁,溯源攻击手段、并且提供可行动的解决方案
先知:全球顶尖白帽子和安全公司帮你找漏洞,最私密的安全众测平台。全面体检,提早发现业务漏洞及风险,按效果付费
移动安全:为移动APP提供安全漏洞、恶意代码、仿冒应用等检测服务,并可对应用进行安全增强,提高反破解和反逆向能力。
8、互联网中间件:
企业级分布式应用服务EDAS:以应用为中心的中间件PaaS平台、
消息队列MQ:ApacheRocketMQ商业版企业级异步通信中间件
分布式关系型数据库服务DRDS:水平拆分/读写分离的在线分布式数据库服务
云服务总线CSB:企业级互联网能力开放平台
业务实施监控服务ARMS:端到端一体化实时监控解决方案产品
9、分析:
E-MapReduce:基于Hadoop/Spark的大数据处理分析服务
云数据库HybirdDB:基于GreenplumDatabase的MPP数据仓库
高性能计算HPC:加速深度学习、渲染和科学计算的GPU物理机
大数据计算服务MaxCompute:TB/PB级数据仓库解决方案
分析型数据库:海量数据实时高并发在线分析
开放搜索:结构化数据搜索托管服务
QuickBI:通过对数据源的连接,对数据进行即席分析和可视化呈现。
参考资料:
百度百科-阿里云
在大数据时代,“多种架构支持多类应用”成为数据库行业应对大数据的基本思路,数据库行业出现互为补充的三大阵营,适用于事务处理应用的OldSQL、适用于数据分析应用的NewSQL和适用于互联网应用的NoSQL。但在一些复杂的应用场景中,单一数据库架构都不能完全满足应用场景对海量结构化和非结构化数据的存储管理、复杂分析、关联查询、实时性处理和控制建设成本等多方面的需要,因此不同架构数据库混合部署应用成为满足复杂应用的必然选择。不同架构数据库混合使用的模式可以概括为:OldSQL+NewSQL、OldSQL+NoSQL、NewSQL+NoSQL三种主要模式。下面通过三个案例对不同架构数据库的混合应用部署进行介绍。
OldSQL+NewSQL 在数据中心类应用中混合部署
采用OldSQL+NewSQL模式构建数据中心,在充分发挥OldSQL数据库的事务处理能力的同时,借助NewSQL在实时性、复杂分析、即席查询等方面的独特优势,以及面对海量数据时较强的扩展能力,满足数据中心对当前“热”数据事务型处理和海量历史“冷”数据分析两方面的需求。OldSQL+NewSQL模式在数据中心类应用中的互补作用体现在,OldSQL弥补了NewSQL不适合事务处理的不足,NewSQL弥补了OldSQL在海量数据存储能力和处理性能方面的缺陷。
商业银行数据中心采用OldSQL+NewSQL混合部署方式搭建,OldSQL数据库满足各业务系统数据的归档备份和事务型应用,NewSQL MPP数据库集群对即席查询、多维分析等应用提供高性能支持,并且通过MPP集群架构实现应对海量数据存储的扩展能力。
商业银行数据中心存储架构
与传统的OldSQL模式相比,商业银行数据中心采用OldSQL+NewSQL混合搭建模式,数据加载性能提升3倍以上,即席查询和统计分析性能提升6倍以上。NewSQL MPP的高可扩展性能够应对新的业务需求,可随着数据量的增长采用集群方式构建存储容量更大的数据中心。
OldSQL+NoSQL 在互联网大数据应用中混合部署
在互联网大数据应用中采用OldSQL+NoSQL混合模式,能够很好的解决互联网大数据应用对海量结构化和非结构化数据进行存储和快速处理的需求。在诸如大型电子商务平台、大型SNS平台等互联网大数据应用场景中,OldSQL在应用中负责高价值密度结构化数据的存储和事务型处理,NoSQL在应用中负责存储和处理海量非结构化的数据和低价值密度结构化数据。OldSQL+NoSQL模式在互联网大数据应用中的互补作用体现在,OldSQL弥补了NoSQL在ACID特性和复杂关联运算方面的不足,NoSQL弥补了OldSQL在海量数据存储和非结构化数据处理方面的缺陷。
数据魔方是淘宝网的一款数据产品,主要提供行业数据分析、店铺数据分析。淘宝数据产品在存储层采用OldSQL+NoSQL混合模式,由基于MySQL的分布式关系型数据库集群MyFOX和基于HBase的NoSQL存储集群Prom组成。由于OldSQL强大的语义和关系表达能力,在应用中仍然占据着重要地位,目前存储在MyFOX中的统计结果数据已经达到10TB,占据着数据魔方总数据量的95%以上。另一方面,NoSQL作为SQL的有益补充,解决了OldSQL数据库无法解决的全属性选择器等问题。
淘宝海量数据产品技术架构
基于OldSQL+NoSQL混合架构的特点,数据魔方目前已经能够提供压缩前80TB的数据存储空间,支持每天4000万的查询请求,平均响应时间在28毫秒,足以满足未来一段时间内的业务增长需求。
NewSQL+NoSQL 在行业大数据应用中混合部署
行业大数据与互联网大数据的区别在于行业大数据的价值密度更高,并且对结构化数据的实时处理、复杂的多表关联分析、即席查询、数据强一致性等都比互联网大数据有更高的要求。行业大数据应用场景主要是分析类应用,如:电信、金融、政务、能源等行业的决策辅助、预测预警、统计分析、经营分析等。
在行业大数据应用中采用NewSQL+NoSQL混合模式,充分利用NewSQL在结构化数据分析处理方面的优势,以及NoSQL在非结构数据处理方面的优势,实现NewSQL与NoSQL的功能互补,解决行业大数据应用对高价值结构化数据的实时处理、复杂的多表关联分析、即席查询、数据强一致性等要求,以及对海量非结构化数据存储和精确查询的要求。在应用中,NewSQL承担高价值密度结构化数据的存储和分析处理工作,NoSQL承担存储和处理海量非结构化数据和不需要关联分析、Ad-hoc查询较少的低价值密度结构化数据的工作。
当前电信运营商在集中化BI系统建设过程中面临着数据规模大、数据处理类型多等问题,并且需要应对大量的固定应用,以及占统计总数80%以上的突发性临时统计(ad-hoc)需求。在集中化BI系统的建设中采用NewSQL+NoSQL混搭的模式,充分利用NewSQL在复杂分析、即席查询等方面处理性能的优势,及NoSQL在非结构化数据处理和海量数据存储方面的优势,实现高效低成本。
集中化BI系统数据存储架构
集中化BI系统按照数据类型和处理方式的不同,将结构化数据和非结构化数据分别存储在不同的系统中:非结构化数据在Hadoop平台上存储与处理;结构化、不需要关联分析、Ad-hoc查询较少的数据保存在NoSQL数据库或Hadoop平台;结构化、需要关联分析或经常ad-hoc查询的数据,保存在NewSQL MPP数据库中,短期高价值数据放在高性能平台,中长期放在低成本产品中。
结语
当前信息化应用的多样性、复杂性,以及三种数据库架构各自所具有的优势和局限性,造成任何一种架构的数据库都不能完全满足应用需求,因此不同架构数据库混合使用,从而弥补其他架构的不足成为必然选择。根据应用场景采用不同架构数据库进行组合搭配,充分发挥每种架构数据库的特点和优势,并且与其他架构数据库形成互补,完全涵盖应用需求,保证数据资源的最优化利用,将成为未来一段时期内信息化应用主要采用的解决方式。
目前在国内市场上,OldSQL主要为Oracle、IBM等国外数据库厂商所垄断,达梦、金仓等国产厂商仍处于追赶状态;南大通用凭借国产新型数据库GBase 8a异军突起,与EMC的Greenplum和HP的Vertica跻身NewSQL市场三强;NoSQL方面用户则大多采用Hadoop开源方案。
特点:
它们可以处理超大量的数据。
它们运行在便宜的PC服务器集群上。
PC集群扩充起来非常方便并且成本很低,避免了“sharding”操作的复杂性和成本。
它们击碎了性能瓶颈。
NoSQL的支持者称,通过NoSQL架构可以省去将Web或Java应用和数据转换成SQL友好格式的时间,执行速度变得更快。
“SQL并非适用于所有的程序代码,” 对于那些繁重的重复操作的数据,SQL值得花钱。但是当数据库结构非常简单时,SQL可能没有太大用处。
没有过多的操作。
虽然NoSQL的支持者也承认关系数据库提供了无可比拟的功能集合,而且在数据完整性上也发挥绝对稳定,他们同时也表示,企业的具体需求可能没有那么多。
Bootstrap支持
因为NoSQL项目都是开源的,因此它们缺乏供应商提供的正式支持。这一点它们与大多数开源项目一样,不得不从社区中寻求支持。
优点:
易扩展
NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。
大数据量,高性能
NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一种大粒度的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的 Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。
灵活的数据模型
NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦。这点在大数据量的web2.0时代尤其明显。
高可用
NoSQL在不太影响性能的情况,就可以方便的实现高可用的架构。比如Cassandra,HBase模型,通过复制模型也能实现高可用。
主要应用:
Apache HBase
这个大数据管理平台建立在谷歌强大的BigTable管理引擎基础上。作为具有开源、Java编码、分布式多个优势的数据库,Hbase最初被设计应用于Hadoop平台,而这一强大的数据管理工具,也被Facebook采用,用于管理消息平台的庞大数据。
Apache Storm
用于处理高速、大型数据流的分布式实时计算系统。Storm为Apache Hadoop添加了可靠的实时数据处理功能,同时还增加了低延迟的仪表板、安全警报,改进了原有的操作方式,帮助企业更有效率地捕获商业机会、发展新业务。
Apache Spark
该技术采用内存计算,从多迭代批量处理出发,允许将数据载入内存做反复查询,此外还融合数据仓库、流处理和图计算等多种计算范式,Spark用Scala语言实现,构建在HDFS上,能与Hadoop很好的结合,而且运行速度比MapReduce快100倍。
Apache Hadoop
该技术迅速成为了大数据管理标准之一。当它被用来管理大型数据集时,对于复杂的分布式应用,Hadoop体现出了非常好的性能,平台的灵活性使它可以运行在商用硬件系统,它还可以轻松地集成结构化、半结构化和甚至非结构化数据集。
Apache Drill
你有多大的数据集?其实无论你有多大的数据集,Drill都能轻松应对。通过支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平台,允许大规模数据吞吐,而且能很快得出结果。
Apache Sqoop
也许你的数据现在还被锁定于旧系统中,Sqoop可以帮你解决这个问题。这一平台采用并发连接,可以将数据从关系数据库系统方便地转移到Hadoop中,可以自定义数据类型以及元数据传播的映射。事实上,你还可以将数据(如新的数据)导入到HDFS、Hive和Hbase中。
Apache Giraph
这是功能强大的图形处理平台,具有很好可扩展性和可用性。该技术已经被Facebook采用,Giraph可以运行在Hadoop环境中,可以将它直接部署到现有的Hadoop系统中。通过这种方式,你可以得到强大的分布式作图能力,同时还能利用上现有的大数据处理引擎。
Cloudera Impala
Impala模型也可以部署在你现有的Hadoop群集上,监视所有的查询。该技术和MapReduce一样,具有强大的批处理能力,而且Impala对于实时的SQL查询也有很好的效果,通过高效的SQL查询,你可以很快的了解到大数据平台上的数据。
Gephi
它可以用来对信息进行关联和量化处理,通过为数据创建功能强大的可视化效果,你可以从数据中得到不一样的洞察力。Gephi已经支持多个图表类型,而且可以在具有上百万个节点的大型网络上运行。Gephi具有活跃的用户社区,Gephi还提供了大量的插件,可以和现有系统完美的集成到一起,它还可以对复杂的IT连接、分布式系统中各个节点、数据流等信息进行可视化分析。
MongoDB
这个坚实的平台一直被很多组织推崇,它在大数据管理上有极好的性能。MongoDB最初是由DoubleClick公司的员工创建,现在该技术已经被广泛的应用于大数据管理。MongoDB是一个应用开源技术开发的NoSQL数据库,可以用于在JSON这样的平台上存储和处理数据。目前,纽约时报、Craigslist以及众多企业都采用了MongoDB,帮助他们管理大型数据集。(Couchbase服务器也作为一个参考)。
十大顶尖公司:
Amazon Web Services
Forrester将AWS称为“云霸主”,谈到云计算领域的大数据,那就不得不提到亚马逊。该公司的Hadoop产品被称为EMR(Elastic Map Reduce),AWS解释这款产品采用了Hadoop技术来提供大数据管理服务,但它不是纯开源Hadoop,经过修改后现在被专门用在AWS云上。
Forrester称EMR有很好的市场前景。很多公司基于EMR为客户提供服务,有一些公司将EMR应用于数据查询、建模、集成和管理。而且AWS还在创新,Forrester称未来EMR可以基于工作量的需要自动缩放调整大小。亚马逊计划为其产品和服务提供更强大的EMR支持,包括它的RedShift数据仓库、新公布的Kenesis实时处理引擎以及计划中的NoSQL数据库和商业智能工具。不过AWS还没有自己的Hadoop发行版。
Cloudera
Cloudera有开源Hadoop的发行版,这个发行版采用了Apache Hadoop开源项目的很多技术,不过基于这些技术的发行版也有很大的进步。Cloudera为它的Hadoop发行版开发了很多功能,包括Cloudera管理器,用于管理和监控,以及名为Impala的SQL引擎等。Cloudera的Hadoop发行版基于开源Hadoop,但也不是纯开源的产品。当Cloudera的客户需要Hadoop不具备的某些功能时,Cloudera的工程师们就会实现这些功能,或者找一个拥有这项技术的合作伙伴。Forrester表示:“Cloudera的创新方法忠于核心Hadoop,但因为其可实现快速创新并积极满足客户需求,这一点使它不同于其他那些供应商。”目前,Cloudera的平台已经拥有200多个付费客户,一些客户在Cloudera的技术支持下已经可以跨1000多个节点实现对PB级数据的有效管理。
Hortonworks
和Cloudera一样,Hortonworks是一个纯粹的Hadoop技术公司。与Cloudera不同的是,Hortonworks坚信开源Hadoop比任何其他供应商的Hadoop发行版都要强大。Hortonworks的目标是建立Hadoop生态圈和Hadoop用户社区,推进开源项目的发展。Hortonworks平台和开源Hadoop联系紧密,公司管理人员表示这会给用户带来好处,因为它可以防止被供应商套牢(如果Hortonworks的客户想要离开这个平台,他们可以轻松转向其他开源平台)。这并不是说Hortonworks完全依赖开源Hadoop技术,而是因为该公司将其所有开发的成果回报给了开源社区,比如Ambari,这个工具就是由Hortonworks开发而成,用来填充集群管理项目漏洞。Hortonworks的方案已经得到了Teradata、Microsoft、Red Hat和SAP这些供应商的支持。
IBM
当企业考虑一些大的IT项目时,很多人首先会想到IBM。IBM是Hadoop项目的主要参与者之一,Forrester称IBM已有100多个Hadoop部署,它的很多客户都有PB级的数据。IBM在网格计算、全球数据中心和企业大数据项目实施等众多领域有着丰富的经验。“IBM计划继续整合SPSS分析、高性能计算、BI工具、数据管理和建模、应对高性能计算的工作负载管理等众多技术。”
Intel
和AWS类似,英特尔不断改进和优化Hadoop使其运行在自己的硬件上,具体来说,就是让Hadoop运行在其至强芯片上,帮助用户打破Hadoop系统的一些限制,使软件和硬件结合的更好,英特尔的Hadoop发行版在上述方面做得比较好。Forrester指出英特尔在最近才推出这个产品,所以公司在未来还有很多改进的可能,英特尔和微软都被认为是Hadoop市场上的潜力股。
MapR Technologies
MapR的Hadoop发行版目前为止也许是最好的了,不过很多人可能都没有听说过。Forrester对Hadoop用户的调查显示,MapR的评级最高,其发行版在架构和数据处理能力上都获得了最高分。MapR已将一套特殊功能融入其Hadoop发行版中。例如网络文件系统(NFS)、灾难恢复以及高可用性功能。Forrester说MapR在Hadoop市场上没有Cloudera和Hortonworks那样的知名度,MapR要成为一个真正的大企业,还需要加强伙伴关系和市场营销。
Microsoft
微软在开源软件问题上一直很低调,但在大数据形势下,它不得不考虑让Windows也兼容Hadoop,它还积极投入到开源项目中,以更广泛地推动Hadoop生态圈的发展。我们可以在微软的公共云Windows Azure HDInsight产品中看到其成果。微软的Hadoop服务基于Hortonworks的发行版,而且是为Azure量身定制的。
微软也有一些其他的项目,包括名为Polybase的项目,让Hadoop查询实现了SQLServer查询的一些功能。Forrester说:“微软在数据库、数据仓库、云、OLAP、BI、电子表格(包括PowerPivot)、协作和开发工具市场上有很大优势,而且微软拥有庞大的用户群,但要在Hadoop这个领域成为行业领导者还有很远的路要走。”
Pivotal Software
EMC和Vmware部分大数据业务分拆组合产生了Pivotal。Pivotal一直努力构建一个性能优越的Hadoop发行版,为此,Pivotal在开源Hadoop的基础上又添加了一些新的工具,包括一个名为HAWQ的SQL引擎以及一个专门解决大数据问题的Hadoop应用。Forrester称Pivotal Hadoop平台的优势在于它整合了Pivotal、EMC、Vmware的众多技术,Pivotal的真正优势实际上等于EMC和Vmware两大公司为其撑腰。到目前为止,Pivotal的用户还不到100个,而且大多是中小型客户。
Teradata
对于Teradata来说,Hadoop既是一种威胁也是一种机遇。数据管理,特别是关于SQL和关系数据库这一领域是Teradata的专长。所以像Hadoop这样的NoSQL平台崛起可能会威胁到Teradata。相反,Teradata接受了Hadoop,通过与Hortonworks合作,Teradata在Hadoop平台集成了SQL技术,这使Teradata的客户可以在Hadoop平台上方便地使用存储在Teradata数据仓库中的数据。
AMPLab
通过将数据转变为信息,我们才可以理解世界,而这也正是AMPLab所做的。AMPLab致力于机器学习、数据挖掘、数据库、信息检索、自然语言处理和语音识别等多个领域,努力改进对信息包括不透明数据集内信息的甄别技术。除了Spark,开源分布式SQL查询引擎Shark也源于AMPLab,Shark具有极高的查询效率,具有良好的兼容性和可扩展性。近几年的发展使计算机科学进入到全新的时代,而AMPLab为我们设想一个运用大数据、云计算、通信等各种资源和技术灵活解决难题的方案,以应对越来越复杂的各种难题。
1、使用冗余,每个人的好友信息都在数据库中有存储,就是你说的记录一对一关系
2、数据缓存到内存,数据访问很快
3、状态信息修改异步,比如一个人登陆了,他的好友不是马上就知道,中间间隔几秒也没有关系
4、数据可能不放在关系数据库中,可能使用nosql数据库,比如mongodb,bigtable,cassandra等
云存储是在云计算(cloud computing)概念上延伸和衍生发展出来的一个新的概念。[1] 云计算是分布式处理(Distributed Computing)、并行处理(Parallel Computing)和网格计算(Grid Computing)的发展,是透过网络将庞大的计算处理程序自动分拆成无数个较小的子程序,再交由多部服务器所组成的庞大系统经计算分析之后将处理结果回传给用户。通过云计算技术,网络服务提供者可以在数秒之内,处理数以千万计甚至亿计的信息,达到和”超级计算机”同样强大的网络服务。
NoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题。
大数据分析技术生态圈一览
大数据领域让人晕头转向。为了帮助你,我们决定制作这份厂商图标和目录。它并不是全面列出了这个领域的每家厂商,而是深入探讨大数据分析技术领域。我们希望这份资料新颖、实用。
这是一款面向Hadoop的自助服务式、无数据库模式的大数据分析应用软件。
Platfora
这是一款大数据发现和分析平台。
Qlikview
这是一款引导分析平台。
Sisense
这是一款商业智能软件,专门处理复杂数据的商业智能解决方案。
Sqream
这是一款快速、可扩展的大数据分析SQL数据库。
Splunk
这是一款运维智能平台。
Sumologic
这是一项安全的、专门定制的、基于云的机器数据分析服务。
Actian
这是一款大数据分析平台。
亚马逊Redshift
这是一项PB级云端数据仓库服务。
CitusData
可扩展PostgreSQL。
Exasol
这是一种用于分析数据的大规模并行处理(MPP)内存数据库。
惠普Vertica
这是一款SQL on Hadoop大数据分析平台。
Mammothdb
这是一款与SQL兼容的MPP分析数据库。
微软SQL Server
这是一款关系数据库管理系统。
甲骨文Exadata
这是一款计算和存储综合系统,针对甲骨文数据库软件进行了优化。
SAP HANA
这是一款内存计算平台。
Snowflake
这是一款云数据仓库。
Teradata
这是企业级大数据分析和服务。
数据探查
Apache Drill
这是一款无数据库模式的SQL查询引擎,面向Hadoop、NoSQL和云存储。
Cloudera Impala
这是一款开源大规模并行处理SQL查询引擎。
谷歌BigQuery
这是一项全面托管的NoOps数据分析服务。
Presto
这是一款面向大数据的分布式SQL查询引擎。
Spark
这是一款用于处理大数据的快速通用引擎。
平台/基础设施
亚马逊网络服务(AWS)
提供云计算服务
思科云
提供基础设施即服务
Heroku
为云端应用程序提供平台即服务
Infochimps
提供云服务的大数据解决方案
微软Azure
这是一款企业级云计算平台。
Rackspace
托管专业服务和云计算服务
Softlayer(IBM)
提供云基础设施即服务
数据基础设施
Cask
这是一款面向Hadoop解决方案的开源应用程序平台。
Cloudera
提供基于Hadoop的软件、支持和服务。
Hortonworks
管理HDP――这是一款开源企业Apache Hadoop数据平台。
MAPR
这是面向大数据部署环境的Apache Hadoop技术。
垂直领域应用/数据挖掘
Alpine Data Labs
这是一种高级分析平台,可处理Apache Hadoop和大数据。
R
这是一种免费软件环境,可处理统计计算和图形。
Rapidminer
这是一款开源预测分析平台
SAS
这是一款软件套件,可以挖掘、改动、管理和检索来自众多数据源的数据。
提取、转换和加载(ETL)
IBM Datastage
使用一种高性能并行框架,整合多个系统上的数据。
Informatica
这是一款企业数据整合和管理软件。
Kettle-Pentaho Data Integration
提供了强大的提取、转换和加载(ETL)功能。
微软SSIS
这是一款用于构建企业级数据整合和数据转换解决方案的平台。
甲骨文Data Integrator
这是一款全面的数据整合平台。
SAP
NetWeaver为整合来自各个数据源的数据提供了灵活方式。
Talend
提供了开源整合软件产品
Cassandra
这是键值数据库和列式数据库的混合解决方案。
CouchBase
这是一款开源分布式NoSQL文档型数据库。
Databricks
这是使用Spark的基于云的大数据处理解决方案。
Datastax
为企业版的Cassandra数据库提供商业支持。
IBM DB2
这是一款可扩展的企业数据库服务器软件。
MemSQL
这是一款分布式内存数据库。
MongoDB
这是一款跨平台的文档型数据库。
MySQL
这是一款流行的开源数据库。
甲骨文
这是一款企业数据库软件套件。
PostgresSQL
这是一款对象关系数据库管理系统。
Riak
这是一款分布式NoSQL数据库。
Splice Machine
这是一款Hadoop关系数据库管理系统。
VoltDB
这是一款内存NewSQL数据库。
Actuate
这是一款嵌入式分析和报表解决方案。
BiBoard
这是一款交互式商业智能仪表板和可视化工具。
Chart.IO
这是面向数据库的企业级分析工具。
IBM Cognos
这是一款商业智能和绩效管理软件。
D3.JS
这是一种使用HTML、SVG和CSS可视化显示数据的JavaScript库。
Highcharts
这是面向互联网的交互式JavaScirpt图表。
Logi Analytics
这是自助服务式、基于Web的商业智能和分析应用软件。
微软Power BI
这是交互式数据探查、可视化和演示工具。
Microstrategy
这是一款企业商业智能和分析软件。
甲骨文Hyperion
这是企业绩效管理和商业智能系统。
Pentaho
这是大数据整合和分析解决方案。
SAP Business Objects
这是商业智能解决方案。
Tableau
这是专注于商业智能的交互式数据可视化产品系列。
Tibco Jaspersoft
这是商业智能套件。