新网创想网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

python求多项式函数的简单介绍

python中有没有求legendre多项式的解的函数

他们以后被命名 Adrien-Marie Legendre. 这 常微分方程 频繁地运用到 物理 并且其他技术领域。 特别是当在球状坐标解决 Laplace的等式 (和关连 偏微分方程) 时.

高阳网站制作公司哪家好,找创新互联!从网页设计、网站建设、微信开发、APP开发、响应式网站等网站项目制作,到程序开发,运营维护。创新互联成立于2013年到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选创新互联。

Legendre微分方程也许使用标准解决 电源串联 方法。 等式有 规则单一点 在 x= ± 1如此,级数解关于起源只将一般来说,聚合为 |x| 1. 当 n是整数,解答Pn是规则的(x) x=1也是正规兵在 x=-1和系列为这种解答终止(即。 是多项式)。

用python编程求多项式sn=1-3+5-7+9-11+……的前100项和

he = 0

for n in range(0,100):

if (n % 2 == 0):

he += 2 * n +1

else:

he -= 2 * n + 1

print(he)

代码这样就差不多了

多项式求值的秦九韶算法 python

# 计算一元多项式在给定点x处的值

# 其中多项式系数存放在列表a中,多项式阶数为n

# 1.直接算法

def f(n:int,a:list,x:float):

the_sum = a[0]

for i in range(1,n+1):

the_sum += a[i] * pow(x,i)

return the_sum

# 2.秦九韶算法

def f2(n:int,a:list,x:float):

the_sum = a[n]

for i in range(n,0,-1):

the_sum = the_sum * x + a[i-1]

return  the_sum

python牛顿法求多项式的根

#includeiostream.h

#includemath.h

#includeconio.h

const int N=200;

//带入原函数后所得的值

double f(float x)

{

return (x*x*x-1.8*x*x+0.15*x+0.65);

}

//带入一阶导函数后所得的值

double f1(double x)

{

return (3*x*x-3.6*x+0.15);

}

//牛顿迭代函数

double F(double x)

{

double x1;

x1=x-1.0*f(x)/f1(x);

return (x1);

}

void main()

{

double x0,D_value,x1,y[4];

int k=0,count=0;

for(;;)

{

if(count==3)break;

cout"输入初始值:";

cinx0;

do

{

k++;

x1=F(x0);

D_value=fabs(x1-x0);

x0=x1;

}

while((D_value0.000005)(k=N));

for(int j=0,flag=0;jcount;j++)

{

if(fabs(y[j]-x1)0.000005)

{ flag=1;

cout"该数值附近的根已经求出,请重新换近似值"endl;

break;

}

}

if(flag==1)

continue;

else

{

cout"方程的一个根:"x1","" 迭代次数为:"kendl;

y[count]=x1;

count++;

}

//else

//cout"计算失败!"endl;

}

}

//你的程序其实没问题,牛顿迭代法本身循环一次只能找到一个答案,只要再建一个循环控制使

//用迭代法的次数和判断根的个数就行。我又加了一个判断是否有重复的根的循环。

//希望能对你有所帮助。

python 编程,求多项式的根

t,a,r=0,1,0

while a=100:

空if t==0:

空空r,t=r+a,1

空else:

空空r,t=r-a,0

空a+=2

print r

以f(x)=3x^2-e^x为例,以下为C++代码:

#includeiostream

{

double x;

cout"输入du初始迭代zhi值:"endl;

cinx;

while(abs(f(x))0.00001) x=x-f(x)/fd(x);

cout"计算结果: x="x", f(x)="f(x)endl;

system("pause");

return 0;

运行结果:输入0.9,输出daox=0.910008, f(x)=6.36005e-009

扩展资料:

根据PEP的规定,必须使用4个空格来表示每级缩进(不清楚4个空格的规定如何,在实际编写中可以自定义空格数,但是要满足每级缩进间空格数相等)。使用Tab字符和其它数目的空格虽然都可以编译通过,但不符合编码规范。支持Tab字符和其它数目的空格仅仅是为兼容很旧的的Python程序和某些有问题的编辑程序。

参考资料来源:百度百科-Python


网页名称:python求多项式函数的简单介绍
分享地址:http://wjwzjz.com/article/hjssdg.html
在线咨询
服务热线
服务热线:028-86922220
TOP