新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
本课将继续介绍 Seaborn 中的统计图。一定要牢记,Seaborn 是对 Matplotlib 的高级封装,它优化了很多古老的做图过程,因此才会看到一个函数解决问题的局面。
在榆社等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供网站制作、成都网站制作 网站设计制作按需网站策划,公司网站建设,企业网站建设,成都品牌网站建设,网络营销推广,成都外贸网站建设公司,榆社网站建设费用合理。
在统计学中,研究数据的分布情况,也是一个重要的工作,比如某些数据是否为正态分布——某些机器学习模型很在意数据的分布情况。
在 Matplotlib 中,可以通过绘制直方图将数据的分布情况可视化。在 Seaborn 中,也提供了绘制直方图的函数。
输出结果:
sns.distplot 函数即实现了直方图,还顺带把曲线画出来了——曲线其实代表了 KDE。
除了 sns.distplot 之外,在 Seaborn 中还有另外一个常用的绘制数据分布的函数 sns.kdeplot,它们的使用方法类似。
首先看这样一个示例。
输出结果:
① 的作用是设置所得图示的背景颜色,这样做的目的是让下面的 ② 绘制的图像显示更清晰,如果不设置 ①,在显示的图示中看到的就是白底图像,有的部分看不出来。
② 最终得到的是坐标网格,而且在图中分为三部分,如下图所示。
相对于以往的坐标网格,多出了 B 和 C 两个部分。也就是说,不仅可以在 A 部分绘制某种统计图,在 B 和 C 部分也可以绘制。
继续操作:
输出结果:
语句 ③ 实现了在坐标网格中绘制统计图的效果,jp.plot 方法以两个绘图函数为参数,分别在 A 部分绘制了回归统计图,在 B 和 C 部分绘制了直方图,而且直方图分别表示了对应坐标轴数据的分布,即:
我们把有语句 ② 和 ③ 共同实现的统计图,称为联合统计图。除了用 ② ③ 两句可以绘制这种图之外,还有一个函数也能够“两步并作一步”,具体如下:
输出结果:
这几个函数在 Python 里面被称为高阶函数,本文主要学习它们的用法。
filter 函数原型如下:
第一个参数是判断函数(返回结果需要是 True 或者 False),第二个为序列,该函数将对 iterable 序列依次执行 function(item) 操作,返回结果是过滤之后结果组成的序列。
简单记忆:对序列中的元素进行筛选,获取符合条件的序列。
返回结果为: ,使用 list 函数可以输入序列内容。
map 函数原型如下:
该函数运行之后生成一个 list,第一个参数是函数、第二个参数是一个或多个序列;
下述代码是一个简单的测试案例:
上述代码运行完毕,得到的结果是: 。使用 print(list(my_new_list)) 可以得到结果。
map 函数的第一个参数,可以有多个参数,当这种情况出现后,后面的第二个参数需要是多个序列。
map 函数解决的问题:
reduce 函数原型如下:
第一个参数是函数,第二个参数是序列,返回计算结果之后的值。该函数价值在于滚动计算应用于列表中的连续值。
测试代码如下:
最终的结果是 6,如果设置第三个参数为 4,可以运行代码查看结果,最后得到的结论是,第三个参数表示初始值,即累加操作初始的数值。
简单记忆:对序列内所有元素进行累计操作。
zip 函数原型如下:
zip 函数将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。
如果各个迭代器的元素个数不一样,则返回列表长度与最短的对象相同,利用星号( * )操作符,可以将元组解压为列表。
测试代码如下:
展示如何利用 * 操作符:
输出结果如下:
简单记忆:zip 的功能是映射多个容器的相似索引,可以方便用于来构造字典。
enumerate 函数原型如下:
参数说明:
该函数用于将一个可遍历的数据对象组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。
测试代码如下:
返回结果为: 。
本文涉及的函数可以与 lambda 表达式进行结合,能大幅度提高编码效率。最好的学习资料永远是官方手册
def语句。用于定义函数和类型的方法。
pass语句。表示此行为空,不运行任何操作。
assert语句。用于程序调适阶段时测试运行条件是否满足。
with语句。Python2.6以后定义的语法,在一个场景中运行语句块。比如,运行语句块前加密,然后在语句块运行退出后解密。