新网创想网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

python抽取数的函数 python取随机数的函数

用python生成随机数的几种方法

1 从给定参数的正态分布中生成随机数

为和政等地区用户提供了全套网页设计制作服务,及和政网站建设行业解决方案。主营业务为成都做网站、成都网站制作、和政网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!

当考虑从正态分布中生成随机数时,应当首先知道正态分布的均值和方差(标准差),有了这些,就可以调用python中现有的模块和函数来生成随机数了。这里调用了Numpy模块中的random.normal函数,由于逻辑非参简单,所有直接贴上代码如下:

import numpy as np# 定义从正态分布中获取随机数的函数def get_normal_random_number(loc, scale): """ :param loc: 正态分布的均值 :param scale: 正态分布的标准差 :return:从正态分布中产生的随机数 """ # 正态分布中的随机数生成 number = np.random.normal(loc=loc, scale=scale) # 返回值 return number# 主模块if __name__ == "__main__": # 函数调用 n = get_normal_random_number(loc=2, scale=2) # 打印结果 print(n) # 结果:3.275192443463058

2 从给定参数的均匀分布中获取随机数的函数

考虑从均匀分布中获取随机数的时候,要事先知道均匀分布的下界和上界,然后调用Numpy模块的random.uniform函数生成随机数。

import numpy as np# 定义从均匀分布中获取随机数的函数def get_uniform_random_number(low, high): """ :param low: 均匀分布的下界 :param high: 均匀分布的上界 :return: 从均匀分布中产生的随机数 """ # 均匀分布的随机数生成 number = np.random.uniform(low, high) # 返回值 return number# 主模块if __name__ == "__main__": # 函数调用 n = get_uniform_random_number(low=2, high=4) # 打印结果 print(n) # 结果:2.4462417140153114

3 按照指定概率生成随机数

有时候我们需要按照指定的概率生成随机数,比如已知盒子中每种颜色的球的比例,猜测下一次取出的球的颜色。在这里介绍的问题和上面的例子相似,要求给定一个概率列表,从列表对应的数字列表或区间列表中生成随机数,分两部分讨论。

3.1 按照指定概率从数字列表中随机抽取数字

假设给定一个数字列表和一个与之对应的概率列表,两个列表对应位置的元素组成的元组即表示该数字在数字列表中以多大的概率出现,那么如何根据这些已知条件从数字列表中按概率抽取随机数呢?在这里我们考虑用均匀分布来模拟概率,代码如下:

import numpy as npimport random# 定义从均匀分布中获取随机数的函数def get_uniform_random_number(low, high): """ :param low: 均匀分布的下界 :param high: 均匀分布的上界 :return: 从均匀分布中产生的随机数 """ # 均匀分布的随机数生成 number = np.random.uniform(low, high) # 返回值 return number# 定义从一个数字列表中以一定的概率取出对应区间中数字的函数def get_number_by_pro(number_list, pro_list): """ :param number_list:数字列表 :param pro_list:数字对应的概率列表 :return:按概率从数字列表中抽取的数字 """ # 用均匀分布中的样本值来模拟概率 x = random.uniform(0, 1) # 累积概率 cum_pro = 0.0 # 将可迭代对象打包成元组列表 for number, number_pro in zip(number_list, pro_list): cum_pro += number_pro if x cum_pro: # 返回值 return number# 主模块if __name__ == "__main__": # 数字列表 num_list = [1, 2, 3, 4, 5] # 对应的概率列表 pr_list = [0.1, 0.3, 0.1, 0.4, 0.1] # 函数调用 n = get_number_by_pro(number_list=num_list, pro_list=pr_list) # 打印结果 print(n) # 结果:1

3.2 按照指定概率从区间列表中的某个区间内生成随机数

给定一个区间列表和一个与之对应的概率列表,两个列表相应位置的元素组成的元组即表示某数字出现在某区间内的概率是多少,已知这些,我们如何生成随机数呢?这里我们通过两次使用均匀分布达到目的,代码如下:

import numpy as npimport random# 定义从均匀分布中获取随机数的函数def get_uniform_random_number(low, high): """ :param low: 均匀分布的下界 :param high: 均匀分布的上界 :return: 从均匀分布中产生的随机数 """ # 均匀分布的随机数生成 number = np.random.uniform(low, high) # 返回值 return number# 定义从一个数字列表中以一定的概率取出对应区间中数字的函数def get_number_by_pro(number_list, pro_list): """ :param number_list:数字列表 :param pro_list:数字对应的概率列表 :return:按概率从数字列表中抽取的数字 """ # 用均匀分布中的样本值来模拟概率 x = random.uniform(0, 1) # 累积概率 cum_pro = 0.0 # 将可迭代对象打包成元组列表 for number, number_pro in zip(number_list, pro_list): cum_pro += number_pro if x cum_pro: # 从区间[number. number - 1]上随机抽取一个值 num = get_uniform_random_number(number, number - 1) # 返回值 return num# 主模块if __name__ == "__main__": # 数字列表 num_list = [1, 2, 3, 4, 5] # 对应的概率列表 pr_list = [0.1, 0.3, 0.1, 0.4, 0.1] # 函数调用 n = get_number_by_pro(number_list=num_list, pro_list=pr_list) # 打印结果 print(n) # 结果:3.49683787011193

如何用python编写一个从随机数表1~100中抽取三个样本的随机数程序?

#导入随机数模块

import random

#定义一个空的数组,用作取样表

reList = []

#为取样表赋值,1~100

for i in range(1,101):

reList.append(i)

#使用sample方法,取3个随机数

res = random.sample(reList,k=3)

print("三个随机数是:{}".format(res))

如何提取Python数据

首先是准备工作,导入需要使用的库,读取并创建数据表取名为loandata。

?

1

2

3

import numpy as np

import pandas as pd

loandata=pd.DataFrame(pd.read_excel('loan_data.xlsx'))

设置索引字段

在开始提取数据前,先将member_id列设置为索引字段。然后开始提取数据。

?

1

Loandata = loandata.set_index('member_id')

按行提取信息

第一步是按行提取数据,例如提取某个用户的信息。下面使用ix函数对member_id为1303503的用户信息进行了提取。

?

1

loandata.ix[1303503]

按列提取信息

第二步是按列提取数据,例如提取用户工作年限列的所有信息,下面是具体的代码和提取结果,显示了所有用户的工作年龄信息。

?

1

loandata.ix[:,'emp_length']

按行与列提取信息

第三步是按行和列提取信息,把前面两部的查询条件放在一起,查询特定用户的特定信息,下面是查询member_id为1303503的用户的emp_length信息。

?

1

loandata.ix[1303503,'emp_length']

在前面的基础上继续增加条件,增加一行同时查询两个特定用户的贷款金额信息。具体代码和查询结果如下。结果中分别列出了两个用户的代码金额。

?

1

loandata.ix[[1303503,1298717],'loan_amnt']

在前面的代码后增加sum函数,对结果进行求和,同样是查询两个特定用户的贷款进行,下面的结果中直接给出了贷款金额的汇总值。

?

1

loandata.ix[[1303503,1298717],'loan_amnt'].sum()

除了增加行的查询条件以外,还可以增加列的查询条件,下面的代码中查询了一个特定用户的贷款金额和年收入情况,结果中分别显示了这两个字段的结果。

?

1

loandata.ix[1303503,['loan_amnt','annual_inc']]

多个列的查询也可以进行求和计算,在前面的代码后增加sum函数,对这个用户的贷款金额和年收入两个字段求和,并显示出结果。

?

1

loandata.ix[1303503,['loan_amnt','annual_inc']].sum()

python中如何从字符串中提取数字?

1、如下图,要提取#后面的字符,也即红色的“SDK”到B列。

2、首先,在B2中输入公式:

=FIND("#",A2)

返回#在字符串中的位置,#在A2单元格文本中是第6个字符。

3、知识点说明:

FIND()函数查找第一参数在第二参数中的位置。如下图,查找“B”在“ABCD”中是第几个字符。第一参数是要查找的字符“B”,第二参数是被查找的字符串。最终返回“B”在“ABCD”中是第2个字符。

4、然后,在B2中输入公式:

=MID(A2,FIND("#",A2)+1,99)

这样,就提取出了#后的字符。

5、知识点说明:

MID()函数返回从字符串中制定字符开始若干个字符的字符串。如下图,MID()函数返回“ABCDE”字符串中从第2个字符开始的连续3个字符,也就是返回“BCD”。

6、综上,=MID(A2,FIND("#",A2)+1,99)的意思就是从A2单元格#字符后面的一个字符起,取长度为99的字符串。其中的99是一个较大的数字,能涵盖#后字符的最大长度即可。


文章名称:python抽取数的函数 python取随机数的函数
本文来源:http://wjwzjz.com/article/hjpdio.html
在线咨询
服务热线
服务热线:028-86922220
TOP