新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
Python math 库提供许多对浮点数的数学运算函数,math模块不支持复数运算,若需计算复数,可使用cmath模块(本文不赘述)。
成都创新互联公司专注于太和企业网站建设,自适应网站建设,商城网站定制开发。太和网站建设公司,为太和等地区提供建站服务。全流程按需定制网站,专业设计,全程项目跟踪,成都创新互联公司专业和态度为您提供的服务
使用dir函数,查看math库中包含的所有内容:
1) math.pi # 圆周率π
2) math.e #自然对数底数
3) math.inf #正无穷大∞,-math.inf #负无穷大-∞
4) math.nan #非浮点数标记,NaN(not a number)
1) math.fabs(x) #表示X值的绝对值
2) math.fmod(x,y) #表示x/y的余数,结果为浮点数
3) math.fsum([x,y,z]) #对括号内每个元素求和,其值为浮点数
4) math.ceil(x) #向上取整,返回不小于x的最小整数
5)math.floor(x) #向下取整,返回不大于x的最大整数
6) math.factorial(x) #表示X的阶乘,其中X值必须为整型,否则报错
7) math.gcd(a,b) #表示a,b的最大公约数
8) math.frexp(x) #x = i *2^j,返回(i,j)
9) math.ldexp(x,i) #返回x*2^i的运算值,为math.frexp(x)函数的反运算
10) math.modf(x) #表示x的小数和整数部分
11) math.trunc(x) #表示x值的整数部分
12) math.copysign(x,y) #表示用数值y的正负号,替换x值的正负号
13) math.isclose(a,b,rel_tol =x,abs_tol = y) #表示a,b的相似性,真值返回True,否则False;rel_tol是相对公差:表示a,b之间允许的最大差值,abs_tol是最小绝对公差,对比较接近于0有用,abs_tol必须至少为0。
14) math.isfinite(x) #表示当x不为无穷大时,返回True,否则返回False
15) math.isinf(x) #当x为±∞时,返回True,否则返回False
16) math.isnan(x) #当x是NaN,返回True,否则返回False
1) math.pow(x,y) #表示x的y次幂
2) math.exp(x) #表示e的x次幂
3) math.expm1(x) #表示e的x次幂减1
4) math.sqrt(x) #表示x的平方根
5) math.log(x,base) #表示x的对数值,仅输入x值时,表示ln(x)函数
6) math.log1p(x) #表示1+x的自然对数值
7) math.log2(x) #表示以2为底的x对数值
8) math.log10(x) #表示以10为底的x的对数值
1) math.degrees(x) #表示弧度值转角度值
2) math.radians(x) #表示角度值转弧度值
3) math.hypot(x,y) #表示(x,y)坐标到原点(0,0)的距离
4) math.sin(x) #表示x的正弦函数值
5) math.cos(x) #表示x的余弦函数值
6) math.tan(x) #表示x的正切函数值
7)math.asin(x) #表示x的反正弦函数值
8) math.acos(x) #表示x的反余弦函数值
9) math.atan(x) #表示x的反正切函数值
10) math.atan2(y,x) #表示y/x的反正切函数值
11) math.sinh(x) #表示x的双曲正弦函数值
12) math.cosh(x) #表示x的双曲余弦函数值
13) math.tanh(x) #表示x的双曲正切函数值
14) math.asinh(x) #表示x的反双曲正弦函数值
15) math.acosh(x) #表示x的反双曲余弦函数值
16) math.atanh(x) #表示x的反双曲正切函数值
1)math.erf(x) #高斯误差函数
2) math.erfc(x) #余补高斯误差函数
3) math.gamma(x) #伽马函数(欧拉第二积分函数)
4) math.lgamma(x) #伽马函数的自然对数
对正整数n,欧拉函数是小于n的正整数中与n互质的数的数目(因此φ(1)=1)。此函数以其首名研究者欧拉命名(Euler’s totient function),它又称为Euler’s totient function、φ函数、欧拉商数等。cs-dn 例如φ(8)=4,因为1,3,5,7均和8互质。
欧拉常数(Euler-Mascheroniconstant)。
学过高等数学的人都知道,调和级数S=1+1/2+1/3+..是发散的这时引用欧拉常数。
在数论,对正整数n,欧拉函数是小于n的正整数中与n互质的数的数目(因此φ(1)=1)此函数以其首名研究者欧拉命名(Euler’stotientfunction),它又称为Euler’stotientfunction、φ函数、欧拉商数等例如φ(8)=4,因为1,3,5,7均和8互质。
φ函数的值 通式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数(小于等于1)就是1本身)。 (注意:每种质因数只一个。比如12=2*2*3那么φ