新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
在python自带编辑器IDLE中,新建脚本如作图.py
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:空间域名、网站空间、营销软件、网站建设、龙井网站维护、网站推广。
导入需要的模块
import numpy as np
import scipy as sp
import pylab as pl
2
输入代码
x=np.linspace(0,4*np.pi,100)
pl.plot(x,pl.sin(x))
pl.show()
3
执行代码,按F5,可直接显示图片
4
几点说明:
1. 方法linspace(0,4*np.pi,100)表示从0开始,到4*pi结束,生成100个点
2. 方法plot为画图函数,相当于plot(x,y),x为横坐标,y为纵坐标
3.show()为展示出来
希望采纳!!
其中有两个非常漂亮的指数函数图就是用python的matplotlib画出来的。这一期,我们将要介绍如何利用python绘制出如下指数函数。
图 1 a1图 1 a1
我们知道当0 ,指数函数 是单调递减的,当a1 时,指数函数是单调递增的。所以我们首先要定义出指数函数,将a值做不同初始化
import math
...
def exponential_func(x, a): #定义指数函数
y=math.pow(a, x)
return y
然后,利用numpy构造出自变量,利用上面定义的指数函数来计算出因变量
X=np.linspace(-4, 4, 40) #构造自变量组
Y=[exponential_func(x) for x in X] #求函数值
有了自变量和因变量的一些散点,那么就可以模拟我们平时画函数操作——描点绘图,利用下面代码就可以实现
import math
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.axisartist as axisartist #导入坐标轴加工模块
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
fig=plt.figure(figsize=(6,4)) #新建画布
ax=axisartist.Subplot(fig,111) #使用axisartist.Subplot方法创建一个绘图区对象ax
fig.add_axes(ax) #将绘图区对象添加到画布中
def exponential_func(x, a=2): #定义指数函数
y=math.pow(a, x)
return y
X=np.linspace(-4, 4, 40) #构造自变量组
Y=[exponential_func(x) for x in X] #求函数值
ax.plot(X, Y) #绘制指数函数
plt.show()
图 2 a=2
图2虽简单,但麻雀虽小五脏俱全,指数函数该有都有,接下来是如何让其看起来像我们在作图纸上面画的那么美观,这里重点介绍axisartist 坐标轴加工类,在的时候我们已经用过了,这里就不再多说了。我们只需要在上面代码后面加上一些代码来将坐标轴好好打扮一番。
图 3 a1 完整代码# -*- coding: utf-8 -*-图 3 a1 完整代码# -*- coding: utf-8 -*-"""Created on Sun Feb 16 10:19:23 2020project name:@author: 帅帅de三叔"""import mathimport numpy as npimport matplotlib.pyplot as pltimport mp
您可以直接调用
import math
math.pow( 2, x )
或者
import math
def zhishu(x):
return math.pow(2, x)
1、首先点击键盘 win+r,打开运行窗口;在窗口中输入“cmd",点击确定,打开windows命令行窗口。
2、在cmd命令行窗口中输入"python",进入python交互窗口。
3、引入matplotlib模块的pyplot()函数,并重命名为py;引入numpy模块,并重命名为np。
4、使用函数np.arrange(-5,5,0.01)创建变量x的取值范围,是一个一维数组,使用y=2**x,创建y是与自变量x相对应的一维数组。
5、使用函数plt.plot(x,y)绘制指数函数y=2**x的函数图像。
6、最后使用函数plt.show()显示整个一元一次函数的图像,就完成了。