新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
networkx是python的一个库,它为图的数据结构提供算法、生成器以及画图工具。近日在使用ryu进行最短路径获取,可以通过该库来简化工作量。该库采用函数方式进行调用相应的api,其参数类型通常为图对象。
创新互联坚持“要么做到,要么别承诺”的工作理念,服务领域包括:网站建设、做网站、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的永定网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!
函数API的调用,按照以下步骤来创建构建图:
1.networkx的加载
在python中调用networkx通常只需要将该库导入即可
import networkx as nx
2.图对象的创建
networkx提供了四种基本图对象:Graph,DiGraph,MultiGraph,MultiDiGraph。
使用如下调用方式,可以创建以上四种图对象的空图。
G=nx.Graph()
G=nx.DiGraph()
G=nx.MultiGraph()
G=nx.MultiDiGraph()
在 networkx中,图的各个节点允许以哈希表对象来表示,而对于图中边的各个参量,则可以通过与边相关联的方式来标识,一般而言,对于权重,用weight作为keyword,而对于其他的参数,使用者可以采用任何除weight以外的keyword来命名。
3.在2中,创建的只是一副空图,为了得到一个有节点、有边的图,一般采用下面这个函数:
1
2
G.add_edge(1,2) #default edge data=1
G.add_edge(1,2) #specify edge data=0.9
add_edge()函数,该函数在调用时需要传入两个参数u和v,以及多个可选参数
u和v即图中的两个节点,如果图中不存在节点,在调用时会自动将这两个节点添加入内,同时构建两个节点之间的连接关系,可选参数通常指这条边的权重等关系参量。需要注意的是,如果图中已经存在了这条边,重新进行添加时会对这条边进行跟新操作(也就是覆盖了原有的信息)。
对于该函数,除了上述的构建方式以外,还有以下几种方式来创建边:
1
2
3
G.add_edge(*e) # single edge as tuple of two nodes
G.add_edge(1, 3, weight=7, capacity=15, length=342.7) #using many arguements to create edge
G.add_edges_from( [(1, 2)] ) # add edges from iterable container
有时候,当采用默认方式创建边以后,我们可能还会往边里面添加边的相关参数,这时候,可以采用下面的方式来更新边的信息:
1
2
3
4
5
#For non-string attribute keys, use subscript notation.
G.add_edge(1, 2)
G[1][2].update({0: 5}) #更新边的信息
G.edges[1, 2].update({0: 5}) #更新边的信息
#上述两种更新方式,择一选取即可
细心的朋友可能注意到我在写创建图的内容的时候,提到了add_edges_from()函数,该函数也是用来创建边的,该方式与add_edges()略有不同,比之add_edges()采用一个一个节点的方式进行创建,它来的更为便利。这个函数在调用时,需要一个节点元组作为参数以及多个可选参数作为边的信息。你可以这么传递:
默认创建节点之间的边:
1
G.add_edges_from([(u,v)])
也可以这么写,在创建的同时添加信息:
1
G.add_edges_from([(3, 4), (1, 4)], label='WN2898')
通过上述方式,就构建了一个3-4-1的图的连接,并给每条边打上了标签。
由此你就可以创建出自己的图模型了。
为什么python红酒识别没有结果,答:python红酒识别没有结果的原因是识别红酒的权重函数没有返回结果
savetxt
import numpy as np
i2 = np.eye(2)
np.savetxt("eye.txt", i2)
3.4 读入CSV文件
# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800
c,v=np.loadtxt('data.csv', delimiter=',', usecols=(6,7), unpack=True) #index从0开始
3.6.1 算术平均值
np.mean(c) = np.average(c)
3.6.2 加权平均值
t = np.arange(len(c))
np.average(c, weights=t)
3.8 极值
np.min(c)
np.max(c)
np.ptp(c) 最大值与最小值的差值
3.10 统计分析
np.median(c) 中位数
np.msort(c) 升序排序
np.var(c) 方差
3.12 分析股票收益率
np.diff(c) 可以返回一个由相邻数组元素的差
值构成的数组
returns = np.diff( arr ) / arr[ : -1] #diff返回的数组比收盘价数组少一个元素
np.std(c) 标准差
对数收益率
logreturns = np.diff( np.log(c) ) #应检查输入数组以确保其不含有零和负数
where 可以根据指定的条件返回所有满足条件的数
组元素的索引值。
posretindices = np.where(returns 0)
np.sqrt(1./252.) 平方根,浮点数
3.14 分析日期数据
# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800
dates, close=np.loadtxt('data.csv', delimiter=',', usecols=(1,6), converters={1:datestr2num}, unpack=True)
print "Dates =", dates
def datestr2num(s):
return datetime.datetime.strptime(s, "%d-%m-%Y").date().weekday()
# 星期一 0
# 星期二 1
# 星期三 2
# 星期四 3
# 星期五 4
# 星期六 5
# 星期日 6
#output
Dates = [ 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 1. 2. 4. 0. 1. 2. 3. 4. 0.
1. 2. 3. 4.]
averages = np.zeros(5)
for i in range(5):
indices = np.where(dates == i)
prices = np.take(close, indices) #按数组的元素运算,产生一个数组作为输出。
a = [4, 3, 5, 7, 6, 8]
indices = [0, 1, 4]
np.take(a, indices)
array([4, 3, 6])
np.argmax(c) #返回的是数组中最大元素的索引值
np.argmin(c)
3.16 汇总数据
# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800
#得到第一个星期一和最后一个星期五
first_monday = np.ravel(np.where(dates == 0))[0]
last_friday = np.ravel(np.where(dates == 4))[-1]
#创建一个数组,用于存储三周内每一天的索引值
weeks_indices = np.arange(first_monday, last_friday + 1)
#按照每个子数组5个元素,用split函数切分数组
weeks_indices = np.split(weeks_indices, 5)
#output
[array([1, 2, 3, 4, 5]), array([ 6, 7, 8, 9, 10]), array([11,12, 13, 14, 15])]
weeksummary = np.apply_along_axis(summarize, 1, weeks_indices,open, high, low, close)
def summarize(a, o, h, l, c): #open, high, low, close
monday_open = o[a[0]]
week_high = np.max( np.take(h, a) )
week_low = np.min( np.take(l, a) )
friday_close = c[a[-1]]
return("APPL", monday_open, week_high, week_low, friday_close)
np.savetxt("weeksummary.csv", weeksummary, delimiter=",", fmt="%s") #指定了文件名、需要保存的数组名、分隔符(在这个例子中为英文标点逗号)以及存储浮点数的格式。
0818b9ca8b590ca3270a3433284dd417.png
格式字符串以一个百分号开始。接下来是一个可选的标志字符:-表示结果左对齐,0表示左端补0,+表示输出符号(正号+或负号-)。第三部分为可选的输出宽度参数,表示输出的最小位数。第四部分是精度格式符,以”.”开头,后面跟一个表示精度的整数。最后是一个类型指定字符,在例子中指定为字符串类型。
numpy.apply_along_axis(func1d, axis, arr, *args, **kwargs)
def my_func(a):
... """Average first and last element of a 1-D array"""
... return (a[0] + a[-1]) * 0.5
b = np.array([[1,2,3], [4,5,6], [7,8,9]])
np.apply_along_axis(my_func, 0, b) #沿着X轴运动,取列切片
array([ 4., 5., 6.])
np.apply_along_axis(my_func, 1, b) #沿着y轴运动,取行切片
array([ 2., 5., 8.])
b = np.array([[8,1,7], [4,3,9], [5,2,6]])
np.apply_along_axis(sorted, 1, b)
array([[1, 7, 8],
[3, 4, 9],
[2, 5, 6]])
3.20 计算简单移动平均线
(1) 使用ones函数创建一个长度为N的元素均初始化为1的数组,然后对整个数组除以N,即可得到权重。如下所示:
N = int(sys.argv[1])
weights = np.ones(N) / N
print "Weights", weights
在N = 5时,输出结果如下:
Weights [ 0.2 0.2 0.2 0.2 0.2] #权重相等
(2) 使用这些权重值,调用convolve函数:
c = np.loadtxt('data.csv', delimiter=',', usecols=(6,),unpack=True)
sma = np.convolve(weights, c)[N-1:-N+1] #卷积是分析数学中一种重要的运算,定义为一个函数与经过翻转和平移的另一个函数的乘积的积分。
t = np.arange(N - 1, len(c)) #作图
plot(t, c[N-1:], lw=1.0)
plot(t, sma, lw=2.0)
show()
3.22 计算指数移动平均线
指数移动平均线(exponential moving average)。指数移动平均线使用的权重是指数衰减的。对历史上的数据点赋予的权重以指数速度减小,但永远不会到达0。
x = np.arange(5)
print "Exp", np.exp(x)
#output
Exp [ 1. 2.71828183 7.3890561 20.08553692 54.59815003]
Linspace 返回一个元素值在指定的范围内均匀分布的数组。
print "Linspace", np.linspace(-1, 0, 5) #起始值、终止值、可选的元素个数
#output
Linspace [-1. -0.75 -0.5 -0.25 0. ]
(1)权重计算
N = int(sys.argv[1])
weights = np.exp(np.linspace(-1. , 0. , N))
(2)权重归一化处理
weights /= weights.sum()
print "Weights", weights
#output
Weights [ 0.11405072 0.14644403 0.18803785 0.24144538 0.31002201]
(3)计算及作图
c = np.loadtxt('data.csv', delimiter=',', usecols=(6,),unpack=True)
ema = np.convolve(weights, c)[N-1:-N+1]
t = np.arange(N - 1, len(c))
plot(t, c[N-1:], lw=1.0)
plot(t, ema, lw=2.0)
show()
3.26 用线性模型预测价格
(x, residuals, rank, s) = np.linalg.lstsq(A, b) #系数向量x、一个残差数组、A的秩以及A的奇异值
print x, residuals, rank, s
#计算下一个预测值
print np.dot(b, x)
3.28 绘制趋势线
x = np.arange(6)
x = x.reshape((2, 3))
x
array([[0, 1, 2], [3, 4, 5]])
np.ones_like(x) #用1填充数组
array([[1, 1, 1], [1, 1, 1]])
类似函数
zeros_like
empty_like
zeros
ones
empty
3.30 数组的修剪和压缩
a = np.arange(5)
print "a =", a
print "Clipped", a.clip(1, 2) #将所有比给定最大值还大的元素全部设为给定的最大值,而所有比给定最小值还小的元素全部设为给定的最小值
#output
a = [0 1 2 3 4]
Clipped [1 1 2 2 2]
a = np.arange(4)
print a
print "Compressed", a.compress(a 2) #返回一个根据给定条件筛选后的数组
#output
[0 1 2 3]
Compressed [3]
b = np.arange(1, 9)
print "b =", b
print "Factorial", b.prod() #输出数组元素阶乘结果
#output
b = [1 2 3 4 5 6 7 8]
Factorial 40320
print "Factorials", b.cumprod()
#output
有些Python小白对numpy中的常见函数不太了解,今天小编就整理出来分享给大家。
Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数。
数组常用函数
1.where()按条件返回数组的索引值
2.take(a,index)从数组a中按照索引index取值
3.linspace(a,b,N)返回一个在(a,b)范围内均匀分布的数组,元素个数为N个
4.a.fill()将数组的所有元素以指定的值填充
5.diff(a)返回数组a相邻元素的差值构成的数组
6.sign(a)返回数组a的每个元素的正负符号
7.piecewise(a,[condlist],[funclist])数组a根据布尔型条件condlist返回对应元素结果
8.a.argmax(),a.argmin()返回a最大、最小元素的索引
改变数组维度
a.ravel(),a.flatten():将数组a展平成一维数组
a.shape=(m,n),a.reshape(m,n):将数组a转换成m*n维数组
a.transpose,a.T转置数组a
数组组合
1.hstack((a,b)),concatenate((a,b),axis=1)将数组a,b沿水平方向组合
2.vstack((a,b)),concatenate((a,b),axis=0)将数组a,b沿竖直方向组合
3.row_stack((a,b))将数组a,b按行方向组合
4.column_stack((a,b))将数组a,b按列方向组合
数组分割
1.split(a,n,axis=0),vsplit(a,n)将数组a沿垂直方向分割成n个数组
2.split(a,n,axis=1),hsplit(a,n)将数组a沿水平方向分割成n个数组
数组修剪和压缩
1.a.clip(m,n)设置数组a的范围为(m,n),数组中大于n的元素设定为n,小于m的元素设定为m
2.a.compress()返回根据给定条件筛选后的数组
数组属性
1.a.dtype数组a的数据类型
2.a.shape数组a的维度
3.a.ndim数组a的维数
4.a.size数组a所含元素的总个数
5.a.itemsize数组a的元素在内存中所占的字节数
6.a.nbytes整个数组a所占的内存空间7.a.astype(int)转换a数组的类型为int型
数组计算
1.average(a,weights=v)对数组a以权重v进行加权平均
2.mean(a),max(a),min(a),middle(a),var(a),std(a)数组a的均值、最大值、最小值、中位数、方差、标准差
3.a.prod()数组a的所有元素的乘积
4.a.cumprod()数组a的元素的累积乘积
5.cov(a,b),corrcoef(a,b)数组a和b的协方差、相关系数
6.a.diagonal()查看矩阵a对角线上的元素7.a.trace()计算矩阵a的迹,即对角线元素之和
以上就是numpy中的常见函数。更多Python学习推荐:PyThon学习网教学中心。
从零开始用Python构建神经网络
动机:为了更加深入的理解深度学习,我们将使用 python 语言从头搭建一个神经网络,而不是使用像 Tensorflow 那样的封装好的框架。我认为理解神经网络的内部工作原理,对数据科学家来说至关重要。
这篇文章的内容是我的所学,希望也能对你有所帮助。
神经网络是什么?
介绍神经网络的文章大多数都会将它和大脑进行类比。如果你没有深入研究过大脑与神经网络的类比,那么将神经网络解释为一种将给定输入映射为期望输出的数学关系会更容易理解。
神经网络包括以下组成部分
? 一个输入层,x
? 任意数量的隐藏层
? 一个输出层,?
? 每层之间有一组权值和偏置,W and b
? 为隐藏层选择一种激活函数,σ。在教程中我们使用 Sigmoid 激活函数
下图展示了 2 层神经网络的结构(注意:我们在计算网络层数时通常排除输入层)
2 层神经网络的结构
用 Python 可以很容易的构建神经网络类
训练神经网络
这个网络的输出 ? 为:
你可能会注意到,在上面的等式中,输出 ? 是 W 和 b 函数。
因此 W 和 b 的值影响预测的准确率. 所以根据输入数据对 W 和 b 调优的过程就被成为训练神经网络。
每步训练迭代包含以下两个部分:
? 计算预测结果 ?,这一步称为前向传播
? 更新 W 和 b,,这一步成为反向传播
下面的顺序图展示了这个过程:
前向传播
正如我们在上图中看到的,前向传播只是简单的计算。对于一个基本的 2 层网络来说,它的输出是这样的:
我们在 NeuralNetwork 类中增加一个计算前向传播的函数。为了简单起见我们假设偏置 b 为0:
但是我们还需要一个方法来评估预测结果的好坏(即预测值和真实值的误差)。这就要用到损失函数。
损失函数
常用的损失函数有很多种,根据模型的需求来选择。在本教程中,我们使用误差平方和作为损失函数。
误差平方和是求每个预测值和真实值之间的误差再求和,这个误差是他们的差值求平方以便我们观察误差的绝对值。
训练的目标是找到一组 W 和 b,使得损失函数最好小,也即预测值和真实值之间的距离最小。
反向传播
我们已经度量出了预测的误差(损失),现在需要找到一种方法来传播误差,并以此更新权值和偏置。
为了知道如何适当的调整权值和偏置,我们需要知道损失函数对权值 W 和偏置 b 的导数。
回想微积分中的概念,函数的导数就是函数的斜率。
梯度下降法
如果我们已经求出了导数,我们就可以通过增加或减少导数值来更新权值 W 和偏置 b(参考上图)。这种方式被称为梯度下降法。
但是我们不能直接计算损失函数对权值和偏置的导数,因为在损失函数的等式中并没有显式的包含他们。因此,我们需要运用链式求导发在来帮助计算导数。
链式法则用于计算损失函数对 W 和 b 的导数。注意,为了简单起见。我们只展示了假设网络只有 1 层的偏导数。
这虽然很简陋,但是我们依然能得到想要的结果—损失函数对权值 W 的导数(斜率),因此我们可以相应的调整权值。
现在我们将反向传播算法的函数添加到 Python 代码中
为了更深入的理解微积分原理和反向传播中的链式求导法则,我强烈推荐 3Blue1Brown 的如下教程:
Youtube:
整合并完成一个实例
既然我们已经有了包括前向传播和反向传播的完整 Python 代码,那么就将其应用到一个例子上看看它是如何工作的吧。
神经网络可以通过学习得到函数的权重。而我们仅靠观察是不太可能得到函数的权重的。
让我们训练神经网络进行 1500 次迭代,看看会发生什么。 注意观察下面每次迭代的损失函数,我们可以清楚地看到损失函数单调递减到最小值。这与我们之前介绍的梯度下降法一致。
让我们看看经过 1500 次迭代后的神经网络的最终预测结果:
经过 1500 次迭代训练后的预测结果
我们成功了!我们应用前向和方向传播算法成功的训练了神经网络并且预测结果收敛于真实值。
注意预测值和真实值之间存在细微的误差是允许的。这样可以防止模型过拟合并且使得神经网络对于未知数据有着更强的泛化能力。
下一步是什么?
幸运的是我们的学习之旅还没有结束,仍然有很多关于神经网络和深度学习的内容需要学习。例如:
? 除了 Sigmoid 以外,还可以用哪些激活函数
? 在训练网络的时候应用学习率
? 在面对图像分类任务的时候使用卷积神经网络
我很快会写更多关于这个主题的内容,敬请期待!
最后的想法
我自己也从零开始写了很多神经网络的代码
虽然可以使用诸如 Tensorflow 和 Keras 这样的深度学习框架方便的搭建深层网络而不需要完全理解其内部工作原理。但是我觉得对于有追求的数据科学家来说,理解内部原理是非常有益的。
这种练习对我自己来说已成成为重要的时间投入,希望也能对你有所帮助