新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
转自: python指数、幂数拟合curve_fit
创新互联为您提适合企业的网站设计 让您的网站在搜索引擎具有高度排名,让您的网站具备超强的网络竞争力!结合企业自身,进行网站设计及把握,最后结合企业文化和具体宗旨等,才能创作出一份性化解决方案。从网站策划到网站设计制作、做网站, 我们的网页设计师为您提供的解决方案。
1、一次二次多项式拟合
一次二次比较简单,直接使用numpy中的函数即可,polyfit(x, y, degree)。
2、指数幂数拟合curve_fit
使用scipy.optimize 中的curve_fit,幂数拟合例子如下:
下面是指数拟合例子:
很多业务场景中,我们希望通过一个特定的函数来拟合业务数据,以此来预测未来数据的变化趋势。(比如用户的留存变化、付费变化等)
本文主要介绍在 Python 中常用的两种曲线拟合方法:多项式拟合 和 自定义函数拟合。
通过多项式拟合,我们只需要指定想要拟合的多项式的最高项次是多少即可。
运行结果:
对于自定义函数拟合,不仅可以用于直线、二次曲线、三次曲线的拟合,它可以适用于任意形式的曲线的拟合,只要定义好合适的曲线方程即可。
运行结果:
幂函数用最小二乘法拟合的方法:
1、最小二乘使所有点到曲线的方差最小。
2、利用最小二乘对扫描线上的所有数据点进行拟合,得到一条样条曲线。
3、逐点计算每一个点Pi到样条曲线的欧拉距离ei(即点到曲线的最短距离)即可。