新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章主要讲解了“Flink编程模型是怎样的”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Flink编程模型是怎样的”吧!
创新互联建站成立与2013年,先为济阳等服务建站,济阳等地企业,进行企业商务咨询服务。为济阳企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。
Flink 提供几种不同层次的抽象来开发 流/批(streaming/batch)进程
最低级的抽象仅提供状态流(stateful streaming),它通过 Process Function (处理函数)内嵌在 DataStream API 中。它容许用户自由地处理来自一个或多个流的事件,并且使用一致的容错状态。此外,用户也可以给事件时间和处理时间注册回调,使得进程可以实现复杂的计算。
实践中,多数的应用进程不需要使用上述的低级的抽象,仅需要使用核心接口(Core API)来编码,比如 DataStream API (数据流接口,有界/无界流) 和 DataSet API (数据集接口,有界数据集)。这些流畅的接口为数据处理提供了通用构建流程,诸如用户指定的转换(transformation)、连接(join)、聚合(aggregation)、窗口(window)、状态(state)等不同形式。这些接口处理的数据类型在不同的编程语言中以类(class)的形式呈现。
低层次的处理函数(Process Function)与数据流接口(DataStream API)的交互,使得某些特定的操作可以抽象为更低的层次成为可能。数据集接口(DataSet API)在有界的数据集上提供额外的原始操作,例如循环和迭代(loops/iterations)。
表接口(Table API)使以表为中心的声明性 DSL,可以动态地改变表(当展示流的时候)。Table API遵循(扩展)关系型模型:表附加了一个模式(schema)(类似于关系型数据库中的表),此API提供了可比较的操作,例如select,project,join,group-by,aggregate等。Table API进程以声明方式定义应该执行的逻辑操作,而不是准确地指定操作代码。 尽管Table API可以通过各种类型的用户定义函数进行扩展,但它的表现力不如Core API,但使用起来更简洁(编写的代码更少)。 此外,Table API进程还会通过优化进程,在执行之前应用优化规则。
可以在表和DataStream/ DataSet之间无缝转换,允许在进程中混合Table API以及DataStream和DataSet API。
Flink提供的最高级抽象是SQL。 这种抽象在语义和表达方面类似于Table API,但是将进程表示为SQL查询表达式。 SQL抽象与Table API紧密交互,SQL查询可以在Table API中定义的表上执行。
Flink进程的基本构建块是流(streams)和转换(transformations)。 (请注意,Flink的DataSet API中使用的DataSet也是内部流,稍后会详细介绍。)从概念上讲,流是(可能永无止境的)数据记录流,而转换是将一个或多个流作为输入,并产生一个或多个输出流的操作。
执行时,Flink进程映射到流数据流(streaming dataflows),由流(streams)和转换运算符(operators)组成。 每个数据流都以一个或多个源(sources)开头,并以一个或多个接收器(sinks)结束。 数据流类似于任意有向无环图(DAGs, Directed acyclic graphs)。 尽管通过迭代结构允许特殊形式的循环,但为了简单起见,我们将在大多数情况下对其进行掩饰简化。
通常,进程中的转换与数据流中的运算符之间存在一对一的对应关系。 但是,有时一个转换可能包含多个转换运算符。
源(soruces)和接收器(sinks)被记录在 流连接器和 批处理连接器文档中。 转换(transformation)被记录在 DataStream运算符和 DataSet转换中。
Flink中的进程本质上是并行(parallel)和分布式的(distributed)。 在执行期间,流具有一个或多个流分区(stream partitions),并且每个运算符具有一个或多个运算子任务(operator subtasks)。 运算子任务彼此独立,并且可以在不同的线程中执行,也可能是在不同的机器或容器上执行。
运算子任务的数量就是某个特定运算符的并行度(parallelism)。 流的并行度始终是其生成的运算符的并行度。 同一进程的不同运算符可能具有不同的并行级别。
流可以以一对一(或转发)的模式或以重新分发的模式在两个运算符之间传输数据:
一对一(One-to-one)流(例如,在上图中的Source和map()运算符之间)保留元素的分区和排序。这意味着map()运算符的subtask[1]看到的元素与Source运算符的subtask[1]生成的元素顺序相同。
重新分发(Redistributing)流(在上面的map()和keyBy/window之间,以及keyBy/window和Sink之间)重新分配流的分区。每个运算子任务将数据发送到不同的目标子任务,具体取决于所选的转换。示例是keyBy()(通过散列键重新分区),broadcast()或rebalance()(随机重新分区)。在重新分发的交换中,元素之间的排序仅保留在每对发送和接收子任务中(例如,map()的subtask[1]和keyBy/window的subtask[2])。因此,在此示例中,保留了每个键的排序,但并行度确实带来了不同键的聚合结果到达sink的顺序的不确定性。
有关配置和控制并行性的详细信息,请参阅 并行执行的文档。
聚合事件(如,counts,sums)在流上的工作方式与批处理方式不同。 例如,不可能计算流中的所有元素,因为流通常是无限的(无界)。 相反,流上的聚合(counts,sums等)由窗口(windows)限定,例如“在最后5分钟内计数”或“最后100个元素的总和”。
Windows可以是时间驱动的(例如:每30秒)或数据驱动(例如:每100个元素)。 人们通常区分不同类型的窗口,例如翻滚窗口(tumbling windows)(没有重叠),滑动窗口(sliding windows)(具有重叠)和会话窗口(session windows)(由不活动间隙打断)。
当在流进程中引用时间(例如定义窗口)时,可以参考不同的时间概念:
事件时间(Event Time)是创建事件的时间。 它通常由事件中的时间戳描述,例如由生产传感器或生产服务生成。 Flink通过 时间戳分配器(timestamp assigners)访问事件时间戳。
接收时间(Ingestion Time)是事件在源操作符处进入Flink数据流的时间。
处理时间(Processing Time)是每个操作符执行基于时间的操作时的本地时间。
事件时间,接收时间和处理时间
虽然数据流中的许多运算只是一次查看一个单独的事件(例如事件解析器),但某些运算会记住多个事件(例如窗口运算符)的信息。这些操作称为stateful。
状态运算的状态可以被认为是由内嵌的键/值存储来维护。状态和状态运算符读取的流被严格地分区和分发。因此,只有在keyBy()函数之后才能在keyed stream上访问键/值状态,并且限制为与当前事件的键相关联的值。对齐流和状态的键可确保所有状态更新都是本地操作,从而保证一致性而无需事务开销。对齐操作还允许Flink重新分配状态并透明地调整流分区。
状态和分区
Flink使用stream replay和检查点(checkpointng)的组合来实现容错。检查点与每个输入流中的特定点以及每个运算符的对应状态相关。通过恢复运算符的状态并从检查点重新执行(replay)事件,可以从检查点恢复流数据流并保持一致性(exactly-once processing semantics)。
检查点间隔是执行期间的容错和恢复时间(需要重放的事件的数量)之间的折衷方法。
容错的内部机制中的描述提供了有关Flink如何管理检查点和相关主题的更多信息。有关启用和配置检查点的详细信息,请参阅 检查点API文档。
Flink执行 批处理进程作为流进程的一种特殊情况,即流是有界的(有限数量的元素)。 DataSet在内部被视为数据流。因此,上述概念以相同的方式应用于批处理进程,并且它们适用于流进程,除了少数例外:
批处理进程的容错不使用检查点。通过完全重新执行流来进行恢复,因为输入是有限的。这会使资源更多地用于恢复,且使得常规处理资源消耗更少,因为它避免了检查点。
DataSet API中的有状态操作(stateful operations)使用简化的内存/核外(in-memory/out-of-core)数据结构,而不是键/值索引。
DataSet API引入了特殊的同步( superstep-based)迭代,这些迭代只能在有界流上进行。
感谢各位的阅读,以上就是“Flink编程模型是怎样的”的内容了,经过本文的学习后,相信大家对Flink编程模型是怎样的这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!