新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章主要介绍python opencv如何将表格图片按照表格框线进行分割和识别,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
创新互联建站自2013年创立以来,是专业互联网技术服务公司,拥有项目成都网站设计、成都网站制作网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元玉林做网站,已为上家服务,为玉林各地企业和个人服务,联系电话:13518219792如下小程序为使用python+opencv将表格图片,按照表格进行分割,并识别分割后的子图片中的文字,希望对需要的小伙伴有一些些帮助。具体的实现见如下代码。
# -*- coding: utf-8 -*- """ Created on Tue May 28 19:23:19 2019 将图片按照表格框线交叉点分割成子图片(传入图片路径) @author: hx """ import cv2 import numpy as np import pytesseract image = cv2.imread('C:/Users/Administrator/Desktop/7.jpg', 1) #灰度图片 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #二值化 binary = cv2.adaptiveThreshold(~gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 35, -5) #ret,binary = cv2.threshold(~gray, 127, 255, cv2.THRESH_BINARY) cv2.imshow("二值化图片:", binary) #展示图片 cv2.waitKey(0) rows,cols=binary.shape scale = 40 #识别横线 kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(cols//scale,1)) eroded = cv2.erode(binary,kernel,iterations = 1) #cv2.imshow("Eroded Image",eroded) dilatedcol = cv2.dilate(eroded,kernel,iterations = 1) cv2.imshow("表格横线展示:",dilatedcol) cv2.waitKey(0) #识别竖线 scale = 20 kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(1,rows//scale)) eroded = cv2.erode(binary,kernel,iterations = 1) dilatedrow = cv2.dilate(eroded,kernel,iterations = 1) cv2.imshow("表格竖线展示:",dilatedrow) cv2.waitKey(0) #标识交点 bitwiseAnd = cv2.bitwise_and(dilatedcol,dilatedrow) cv2.imshow("表格交点展示:",bitwiseAnd) cv2.waitKey(0) # cv2.imwrite("my.png",bitwiseAnd) #将二值像素点生成图片保存 #标识表格 merge = cv2.add(dilatedcol,dilatedrow) cv2.imshow("表格整体展示:",merge) cv2.waitKey(0) #两张图片进行减法运算,去掉表格框线 merge2 = cv2.subtract(binary,merge) cv2.imshow("图片去掉表格框线展示:",merge2) cv2.waitKey(0) #识别黑白图中的白色交叉点,将横纵坐标取出 ys,xs = np.where(bitwiseAnd>0) mylisty=[] #纵坐标 mylistx=[] #横坐标 #通过排序,获取跳变的x和y的值,说明是交点,否则交点会有好多像素值值相近,我只取相近值的最后一点 #这个10的跳变不是固定的,根据不同的图片会有微调,基本上为单元格表格的高度(y坐标跳变)和长度(x坐标跳变) i = 0 myxs=np.sort(xs) for i in range(len(myxs)-1): if(myxs[i+1]-myxs[i]>10): mylistx.append(myxs[i]) i=i+1 mylistx.append(myxs[i]) #要将最后一个点加入 i = 0 myys=np.sort(ys) #print(np.sort(ys)) for i in range(len(myys)-1): if(myys[i+1]-myys[i]>10): mylisty.append(myys[i]) i=i+1 mylisty.append(myys[i]) #要将最后一个点加入 print('mylisty',mylisty) print('mylistx',mylistx) #循环y坐标,x坐标分割表格 for i in range(len(mylisty)-1): for j in range(len(mylistx)-1): #在分割时,第一个参数为y坐标,第二个参数为x坐标 ROI = image[mylisty[i]+3:mylisty[i+1]-3,mylistx[j]:mylistx[j+1]-3] #减去3的原因是由于我缩小ROI范围 cv2.imshow("分割后子图片展示:",ROI) cv2.waitKey(0) #special_char_list = '`~!@#$%^&*()-_=+[]{}|\\;:‘',。《》/?ˇ' pytesseract.pytesseract.tesseract_cmd = 'E:/Tesseract-OCR/tesseract.exe' text1 = pytesseract.image_to_string(ROI) #读取文字,此为默认英文 #text2 = ''.join([char for char in text2 if char not in special_char_list]) print('识别分割子图片信息为:'+text1) j=j+1 i=i+1
以上是“python opencv如何将表格图片按照表格框线进行分割和识别”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注创新互联行业资讯频道!