新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
通常大家都会根据查询的WHERE条件来创建合适的索引,不过这只是索引优化的一个方面。设计优秀的索引应该考虑到整个查询,而不单单是WHERE条件部分。索引确实是一种查找数据的高效方式,但是MySQL也可以使用索引来直接获取列的数据,这样就不再需要读取数据行。如果索引的叶子节点中已经包含要查询的数据,那么还有什么必要再回到表中查询呢? 如果一个索引覆盖所有需要查询的字段的值,我们就称之为“覆盖索引”。
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名申请、虚拟空间、营销软件、网站建设、隆尧网站维护、网站推广。
覆盖索引是非常有用的工具,能够极大地提高性能:
在所有这些场景中,在索引中满足查询的成本一般比查询行要小得多。
不是所有类型的索引都可以成为覆盖索引。覆盖索引必须要存储索引列的值,而哈希索引、空间索引和全文索引都不存储索引列的值,所以MySQL只能使用B+Tree索引所覆盖索引。另外,不同的存储引擎实现覆盖索引的方式也不同,而且不是所有的引擎都支持覆盖索引。
当发起一个呗索引覆盖的查询是,在EXPLAIN的Extra列可以看到“Using index”的信息。
如: explain select col1 from layout_test where col2=99
索引覆盖查询还有很多陷阱可能会导致无法实现优化。MySQL查询优化器会在执行查询前判断是否有一个索引能进行覆盖。假设索引覆盖了wehre条件中的字段,但不是整个查询涉及的字段。mysql5.5和更早的版本也总是会回表获取数据行,尽管并不需要这一行且最终会被过滤掉。
如: EXPLAIN select * from people where last_name='Allen' and first_name like '%Kim%'
这里索引无法覆盖该查询,有两个原因:
这条语句只检索1行,而之前的 like '%Kim%'要检索3行。
也有办法解决上面所说的两个问题,需要重写查询并巧妙设计索引。
这种方式叫做延迟关联,因为延迟了对列的访问。在查询第一个阶段MySQL可以使用覆盖索引,因为索引包含了主键id的值,不需要做二次查找。
在FROM子句的子查询中找到匹配的id,然后根据这些id值在外层查询匹配获取需要的所有列值。虽然无法使用索引覆盖整个查询,但总算比完全无法利用索引覆盖的好吧。
数据量大了怎么办?
这样优化的效果取决于WHERE条件匹配返回的行数。假设这个people表有100万行,我们看一下上面两个查询在三个不同的数据集上的表现,每个数据集都包含100万行。
实例1中 ,查询返回了一个很大的结果集,因此看不到优化的效果。大部分时间都花在读取和发送数据上了。
实例2中 ,经过索引过滤,尤其是第二个条件过滤后只返回了很少的结果集,优化的效果非常明显:在这个数据及上性能提高了很多,优化后的查询效率主要得益于只需读取40行完整数据行,而不是原查询中需要的30000行。
实例3中 ,子查询效率反而下降。因为索引过滤时符合第一个条件的结果集已经很小了,所以子查询带来的成本反而比从表中直接提取完整行更高。
在大多数存储引擎中,覆盖索引只能覆盖那些只访问索引中部分列的查询。不过,可以更进一步优化InnoDB。回想一下,InnoDB的二级索引的叶子节点都包含了主键的值,这意味着InnoDB的二级索引可以有效地利用这些额外的主键列来覆盖查询。
例如,people表中last_name字段有一个二级索引,虽然该索引的列不包括主键id,但也能够用于对id做覆盖查询:
select id,last_name from people where last_name='hua'
索引(Index)是帮助MySQL高效获取数据的数据结构。可以得到索引的本质:索引是数据结构。
可以理解为“排好序的快速查找数据结构”
在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,
这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。
我们可以通过查看索引的属性来判断创建索引的方法。
查看索引的语法格式如下:
SHOW INDEX FROM 表名 [ FROM 数据库名]
语法说明如下:
表名:指定需要查看索引的数据表名。
数据库名:指定需要查看索引的数据表所在的数据库,可省略。比如,SHOW INDEX FROM student FROM test; 语句表示查看 test 数据库中 student 数据表的索引。
示例
使用 SHOW INDEX 语句查看《MySQL创建索引》一节中 tb_stu_info2 数据表的索引信息,SQL 语句和运行结果如下所示。
mysql SHOW INDEX FROM tb_stu_info2\G
1. row
Table: tb_stu_info2
Non_unique: 0
Key_name: height
Seq_in_index: 1
Column_name: height
Collation: A
Cardinality: 0
Sub_part: NULL
Packed: NULL
Null: YES
Index_type: BTREE
Comment:
Index_comment:
1 row in set (0.03 sec)
其中各主要参数说明如下:
参数 说明
Table 表示创建索引的数据表名,这里是 tb_stu_info2 数据表。
Non_unique 表示该索引是否是唯一索引。若不是唯一索引,则该列的值为 1;若是唯一索引,则该列的值为 0。
Key_name 表示索引的名称。
Seq_in_index 表示该列在索引中的位置,如果索引是单列的,则该列的值为 1;如果索引是组合索引,则该列的值为每列在索引定义中的顺序。
Column_name 表示定义索引的列字段。
Collation 表示列以何种顺序存储在索引中。在 MySQL 中,升序显示值“A”(升序),若显示为 NULL,则表示无分类。
Cardinality 索引中唯一值数目的估计值。基数根据被存储为整数的统计数据计数,所以即使对于小型表,该值也没有必要是精确的。基数越大,当进行联合时,MySQL 使用该索引的机会就越大。
Sub_part 表示列中被编入索引的字符的数量。若列只是部分被编入索引,则该列的值为被编入索引的字符的数目;若整列被编入索引,则该列的值为 NULL。
Packed 指示关键字如何被压缩。若没有被压缩,值为 NULL。
Null 用于显示索引列中是否包含 NULL。若列含有 NULL,该列的值为 YES。若没有,则该列的值为 NO。
Index_type 显示索引使用的类型和方法(BTREE、FULLTEXT、HASH、RTREE)。
Comment 显示评注。