新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
MySQL 在崩溃恢复时,会遍历打开所有 ibd 文件的 header page 验证数据字典的准确性,如果 MySQL 中包含了大量表,这个校验过程就会比较耗时。 MySQL 下崩溃恢复确实和表数量有关,表总数越大,崩溃恢复时间越长。另外磁盘 IOPS 也会影响崩溃恢复时间,像这里开发库的 HDD IOPS 较低,因此面对大量的表空间,校验速度就非常缓慢。另外一个发现,MySQL 8 下正常启用时居然也会进行表空间校验,而故障恢复时则会额外再进行一次表空间校验,等于校验了 2 遍。不过 MySQL 8.0 里多了一个特性,即表数量超过 5W 时,会启用多线程扫描,加快表空间校验过程。
成都创新互联公司成立于2013年,是专业互联网技术服务公司,拥有项目做网站、网站制作网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元延平做网站,已为上家服务,为延平各地企业和个人服务,联系电话:028-86922220
如何跳过校验MySQL 5.7 下有方法可以跳过崩溃恢复时的表空间校验过程嘛?查阅了资料,方法主要有两种:
1. 配置 innodb_force_recovery可以使 srv_force_recovery != 0 ,那么 validate = false,即可以跳过表空间校验。实际测试的时候设置 innodb_force_recovery =1,也就是强制恢复跳过坏页,就可以跳过校验,然后重启就是正常启动了。通过这种临时方式可以避免崩溃恢复后非常耗时的表空间校验过程,快速启动 MySQL,个人目前暂时未发现有什么隐患。2. 使用共享表空间替代独立表空间这样就不需要打开 N 个 ibd 文件了,只需要打开一个 ibdata 文件即可,大大节省了校验时间。自从听了姜老师讲过使用共享表空间替代独立表空间解决 drop 大表时性能抖动的原理后,感觉共享表空间在很多业务环境下,反而更有优势。
临时冒出另外一种解决想法,即用 GDB 调试崩溃恢复,通过临时修改 validate 变量值让 MySQL 跳过表空间验证过程,然后让 MySQL 正常关闭,重新启动就可以正常启动了。但是实际测试发现,如果以 debug 模式运行,确实可以临时修改 validate 变量,跳过表空间验证过程,但是 debug 模式下代码运行效率大打折扣,反而耗时更长。而以非 debug 模式运行,则无法修改 validate 变量,想法破灭。
更改mysql配置如下:
# Uncomment the following if you are using InnoDB tables
#innodb_data_home_dir = /var/lib/mysql/
innodb_data_file_path = ibdata1:50M:autoextend
#innodb_log_group_home_dir = /var/lib/mysql/
#innodb_log_arch_dir = /var/lib/mysql/
# You can set .._buffer_pool_size up to 50 - 80 %
# of RAM but beware of setting memory usage too high
innodb_buffer_pool_size = 256M
innodb_additional_mem_pool_size = 10M
# Set .._log_file_size to 25 % of buffer pool size
#innodb_log_file_size = 128M
innodb_log_buffer_size = 8M
#innodb_flush_log_at_trx_commit = 1
#innodb_lock_wait_timeout = 50
innodb_support_xa=off
用mysql-connector-odbc-5[1].1.5-win32.msi这个驱动程序
哥们,你建主键了没?
排除了以上问题,还慢,就看看你的连接了,如果是自己写的,那么建议你找个别人写好的连接类试试。有时候代码没问题,db没问题,那么只有时连接的问题了。
如果原表很大,插入数据会非常慢,建议插入到临时表,然后用一个语句(INSERT
INTO
XXX
SELECT
*
FTOM
TMPXXX)把数据插入,这样速度会快一点,如果想更快,需要减少不必要的索引,如果大批量的插入,可以插入前删除索引,插入后重新建立。
你好,很高兴回答你的问题。
要解答这个问题,首先要了解数据表结构,自己表的索引情况,还有现有的数据量等等。
然后才能根据情况来分析到底是什么原因导致的写入速度慢。
mysql5的手册中提到,插入一条记录,所需的时间比例大概是:
连接:(3)
发送查询给服务器:(2)
分析查询:(2)
插入记录:(1x记录大小)
插入索引:(1x索引)
关闭:(1)
并且表的大小以logN(B树)的速度减慢索引的插入,因此提高插入速度的方法大概有以下7种:
一个insert语句包含多个value值;
使用insert delayed方法;
使用insert into ...values(select ...from),即select的同时执行insert;
使用load data infile;
先禁掉索引,插入后再创建索引;
写锁表,插入,解锁。原因是索引缓存区仅在所有insert语句完成后才刷新到磁盘上一次;
增加key_buffer_size值来扩大键高速缓冲区。
1.当我们请求mysql服务器的时候,MySQL前端会有一个监听,请求到了之后,服务器得到相关的SQL语句,执行之前(虚线部分为执行),还会做权限的判断
2.通过权限之后,SQL就到MySQL内部,他会在查询缓存中,看该SQL有没有执行过,如果有查询过,则把缓存结果返回,说明在MySQL内部,也有一个查询缓存.但是这个查询缓存,默认是不开启的,这个查询缓存,和我们的Hibernate,Mybatis的查询缓存是一样的,因为查询缓存要求SQL和参数都要一样,所以这个命中率是非常低的(没什么卵用的意思)。
3.如果我们没有开启查询缓存,或者缓存中没有找到对应的结果,那么就到了解析器,解析器主要对SQL语法进行解析
4.解析结束后就变成一颗解析树,这个解析树其实在Hibernate里面也是有的,大家回忆一下,在以前做过Hibernate项目的时候,是不是有个一个antlr.jar。这个就是专门做语法解析的工具.因为在Hibernate里面有HQL,它就是通过这个工具转换成SQL的,我们编程语言之所以有很多规范、语法,其实就是为了便于这个解析器解析,这个学过编译原理的应该知道.
5.得到解析树之后,不能马上执行,这还需要对这棵树进行预处理,也就是说,这棵树,我没有经过任何优化的树,预处理器会这这棵树进行一些预处理,比如常量放在什么地方,如果有计算的东西,把计算的结果算出来等等...
6.预处理完毕之后,此时得到一棵比较规范的树,这棵树就是要拿去马上做执行的树,比起之前的那棵树,这棵得到了一些优化
7.查询优化器,是MySQL里面最关键的东西,我们写任何一条SQL,比如SELECT * FROM USER WHERE USERNAME = toby AND PASSWORD = 1,它会怎么去执行?它是先执行username = toby还是password = 1?每一条SQL的执行顺序查询优化器就是根据MySQL对数据统计表的一些信息,比如索引,比如表一共有多少数据,MySQL都是有缓存起来的,在真正执行SQL之前,他会根据自己的这些数据,进行一个综合的判定,判断这一次在多种执行方式里面,到底选哪一种执行方式,可能运行的最快.这一步是MySQL性能中,最关键的核心点,也是我们的优化原则.我们平时所讲的优化SQL,其实说白了,就是想让查询优化器,按照我们的想法,帮我们选择最优的执行方案,因为我们比MySQL更懂我们的数据.MySQL看数据,仅仅只是自己收集到的信息,这些信息可能是不准确的,MySQL根据这些信息选了一个它自认为最优的方案,但是这个方案可能和我们想象的不一样.
8.这里的查询执行计划,也就是MySQL查询中的执行计划,比如要先执行username = toby还是password = 1
9.这个执行计划会传给查询执行引擎,执行引擎选择存储引擎来执行这一份传过来的计划,到磁盘中的文件中去查询,这个时候重点来了,影响这个查询性能最根本的原因是什么?就是硬盘的机械运动,也就是我们平时熟悉的IO,所以一条查询语句是快还是慢,就是根据这个时间的IO来确定的.那怎么执行IO又是什么来确定的?就是传过来的这一份执行计划.(优化就是制定一个我们认为最快的执行方案,最节省IO,和执行最快)
10.如果开了查询缓存,则返回结果给客户端,并且查询缓存也放一份。