新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
首先,来谈一下对数据库市场的看法,关系型数据库会一直占有主导地位。第一个原因是它的历史最久,有庞大的用户基础,根深。第二,SQL 的 query 在场景上依然是占主体的,尤其在数据分析上。 NoSQL的产生的是SQL对某些非关系为场景(KV点读)上的scalability 不好导致的。那个时候,主要问题是无法横向 scale,也就是没有分布式的支持,所以NoSQL 诞生了。而且KV, document 使用 normalized 数据结构也不利于理解和编程,所以可以看做是NoSQL 从SQL中抢了一些自己更适合的场景,所以它是在特定的时间和环境出现的一个产品。随着Distributed SQL 的出现, NoSQL 和 Distributed SQL 变得越来越像。未来几年有可能和 Distributed SQL 合并作为了一个产品类型。 NoSQL 在市场份额上不会超过或取代SQL, 在一些场景上会继续成长,尤其是用关系型数据集不好表达的,比如图。
成都创新互联公司是一家业务范围包括IDC托管业务,虚拟空间、主机租用、主机托管,四川、重庆、广东电信服务器租用,资阳移动机房,成都网通服务器托管,成都服务器租用,业务范围遍及中国大陆、港澳台以及欧美等多个国家及地区的互联网数据服务公司。
今天 NewSQL 和 Distributed SQL 这2个名词在业界有一定的混淆。NewSQL 出现的早,可以被认为是Distributed SQL 的子集。以后还是以 Distributed SQL 为定义好。 所以你的问题其实是在 传统SQL,Distributed SQL 和 noSQL 之间如何选择。
答案是,最重要的指标是看用户的数据access的场景,和对应的数据结构。满足以下条件,更多考虑NoSQL:
数据之间没有关系,或者关系不强烈;每个row独立,row 之间不存在大规模的一对多,多对多的关系。
数据本身适合KV, 或者自我包含的hierachy关系。 比如个人profile, 完全自我contain, 人很人之间不需要query。
Access 数据的方式主要以 ID (primary key) 为主的点读,和顺序access (按顺序iterate)。
需要支持大规模的读写,低延时。
如果需要事务特性,范围限于一个或几个row, 没有关系型的事务。
使用 SQL 主要是因为 row 和 row 之间有关系; 存在一对多、多对多的关系。同时在关系的前提下,支持事务。支持table join的语法。对一致性要求高(强一致)。 Distributed SQL 提供了跨节点的分布式事务,query 等。但它是建立在牺牲性能的前提下的,延时大大价高。所以 NoSQL 是分布式+无关系,传统SQL 是 有关系+无分布式, Distributed SQL 是 分布式 + 有关系 + 性能取舍。
NewSQL 现在已经消退了,目前在国外退化为Distributed SQL原因如下:
卡耐基梅隆大学数据库教授Andy Pavlo,在文中系统地分析了NewSQL兴起到消亡的过程,给出了他认为NewSQL消亡的一些原因,比如:
1)没有开源。
2)没有拥抱公有云,在成本与技术上难与跟公有云厂商抗衡。
3)已有的关系型数据库MySQL,PostgreSQL做的不错,而且在不断改进,大部分客户数据并不多,单节点存储就能装下。
4)销售困难:客户担心切换风险,而且面临NoSQL在易用性方面的夹击。
另外,在谈到数据库发展趋势时,也提到NoSQL开始普遍支持SQL,joins和事务功能。到2021年后NewSQL概念除了中国的数据库创业公司,国外较少提了,更多地转向Distributed SQL。
NoSQL 和 关系型数据库,OLAP和OLTP的边界目前和未来会进一步模糊。市场的主要NoSQL产品开始普遍支持SQL,joins和事务功能,就我个人观点而言,NoSQL未来应该还是坚守初心——高并发,低延时,高伸缩性,对于关系型数据库擅长的 跨表Join, 跨机事务,AP等能力扩展应该谨慎些。产品选型时,最好也从这些方面多考虑些。
特点:
它们可以处理超大量的数据。
它们运行在便宜的PC服务器集群上。
PC集群扩充起来非常方便并且成本很低,避免了“sharding”操作的复杂性和成本。
它们击碎了性能瓶颈。
NoSQL的支持者称,通过NoSQL架构可以省去将Web或Java应用和数据转换成SQL友好格式的时间,执行速度变得更快。
“SQL并非适用于所有的程序代码,” 对于那些繁重的重复操作的数据,SQL值得花钱。但是当数据库结构非常简单时,SQL可能没有太大用处。
没有过多的操作。
虽然NoSQL的支持者也承认关系数据库提供了无可比拟的功能集合,而且在数据完整性上也发挥绝对稳定,他们同时也表示,企业的具体需求可能没有那么多。
Bootstrap支持
因为NoSQL项目都是开源的,因此它们缺乏供应商提供的正式支持。这一点它们与大多数开源项目一样,不得不从社区中寻求支持。
优点:
易扩展
NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。
大数据量,高性能
NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一种大粒度的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的 Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。
灵活的数据模型
NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦。这点在大数据量的web2.0时代尤其明显。
高可用
NoSQL在不太影响性能的情况,就可以方便的实现高可用的架构。比如Cassandra,HBase模型,通过复制模型也能实现高可用。
主要应用:
Apache HBase
这个大数据管理平台建立在谷歌强大的BigTable管理引擎基础上。作为具有开源、Java编码、分布式多个优势的数据库,Hbase最初被设计应用于Hadoop平台,而这一强大的数据管理工具,也被Facebook采用,用于管理消息平台的庞大数据。
Apache Storm
用于处理高速、大型数据流的分布式实时计算系统。Storm为Apache Hadoop添加了可靠的实时数据处理功能,同时还增加了低延迟的仪表板、安全警报,改进了原有的操作方式,帮助企业更有效率地捕获商业机会、发展新业务。
Apache Spark
该技术采用内存计算,从多迭代批量处理出发,允许将数据载入内存做反复查询,此外还融合数据仓库、流处理和图计算等多种计算范式,Spark用Scala语言实现,构建在HDFS上,能与Hadoop很好的结合,而且运行速度比MapReduce快100倍。
Apache Hadoop
该技术迅速成为了大数据管理标准之一。当它被用来管理大型数据集时,对于复杂的分布式应用,Hadoop体现出了非常好的性能,平台的灵活性使它可以运行在商用硬件系统,它还可以轻松地集成结构化、半结构化和甚至非结构化数据集。
Apache Drill
你有多大的数据集?其实无论你有多大的数据集,Drill都能轻松应对。通过支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平台,允许大规模数据吞吐,而且能很快得出结果。
Apache Sqoop
也许你的数据现在还被锁定于旧系统中,Sqoop可以帮你解决这个问题。这一平台采用并发连接,可以将数据从关系数据库系统方便地转移到Hadoop中,可以自定义数据类型以及元数据传播的映射。事实上,你还可以将数据(如新的数据)导入到HDFS、Hive和Hbase中。
Apache Giraph
这是功能强大的图形处理平台,具有很好可扩展性和可用性。该技术已经被Facebook采用,Giraph可以运行在Hadoop环境中,可以将它直接部署到现有的Hadoop系统中。通过这种方式,你可以得到强大的分布式作图能力,同时还能利用上现有的大数据处理引擎。
Cloudera Impala
Impala模型也可以部署在你现有的Hadoop群集上,监视所有的查询。该技术和MapReduce一样,具有强大的批处理能力,而且Impala对于实时的SQL查询也有很好的效果,通过高效的SQL查询,你可以很快的了解到大数据平台上的数据。
Gephi
它可以用来对信息进行关联和量化处理,通过为数据创建功能强大的可视化效果,你可以从数据中得到不一样的洞察力。Gephi已经支持多个图表类型,而且可以在具有上百万个节点的大型网络上运行。Gephi具有活跃的用户社区,Gephi还提供了大量的插件,可以和现有系统完美的集成到一起,它还可以对复杂的IT连接、分布式系统中各个节点、数据流等信息进行可视化分析。
MongoDB
这个坚实的平台一直被很多组织推崇,它在大数据管理上有极好的性能。MongoDB最初是由DoubleClick公司的员工创建,现在该技术已经被广泛的应用于大数据管理。MongoDB是一个应用开源技术开发的NoSQL数据库,可以用于在JSON这样的平台上存储和处理数据。目前,纽约时报、Craigslist以及众多企业都采用了MongoDB,帮助他们管理大型数据集。(Couchbase服务器也作为一个参考)。
十大顶尖公司:
Amazon Web Services
Forrester将AWS称为“云霸主”,谈到云计算领域的大数据,那就不得不提到亚马逊。该公司的Hadoop产品被称为EMR(Elastic Map Reduce),AWS解释这款产品采用了Hadoop技术来提供大数据管理服务,但它不是纯开源Hadoop,经过修改后现在被专门用在AWS云上。
Forrester称EMR有很好的市场前景。很多公司基于EMR为客户提供服务,有一些公司将EMR应用于数据查询、建模、集成和管理。而且AWS还在创新,Forrester称未来EMR可以基于工作量的需要自动缩放调整大小。亚马逊计划为其产品和服务提供更强大的EMR支持,包括它的RedShift数据仓库、新公布的Kenesis实时处理引擎以及计划中的NoSQL数据库和商业智能工具。不过AWS还没有自己的Hadoop发行版。
Cloudera
Cloudera有开源Hadoop的发行版,这个发行版采用了Apache Hadoop开源项目的很多技术,不过基于这些技术的发行版也有很大的进步。Cloudera为它的Hadoop发行版开发了很多功能,包括Cloudera管理器,用于管理和监控,以及名为Impala的SQL引擎等。Cloudera的Hadoop发行版基于开源Hadoop,但也不是纯开源的产品。当Cloudera的客户需要Hadoop不具备的某些功能时,Cloudera的工程师们就会实现这些功能,或者找一个拥有这项技术的合作伙伴。Forrester表示:“Cloudera的创新方法忠于核心Hadoop,但因为其可实现快速创新并积极满足客户需求,这一点使它不同于其他那些供应商。”目前,Cloudera的平台已经拥有200多个付费客户,一些客户在Cloudera的技术支持下已经可以跨1000多个节点实现对PB级数据的有效管理。
Hortonworks
和Cloudera一样,Hortonworks是一个纯粹的Hadoop技术公司。与Cloudera不同的是,Hortonworks坚信开源Hadoop比任何其他供应商的Hadoop发行版都要强大。Hortonworks的目标是建立Hadoop生态圈和Hadoop用户社区,推进开源项目的发展。Hortonworks平台和开源Hadoop联系紧密,公司管理人员表示这会给用户带来好处,因为它可以防止被供应商套牢(如果Hortonworks的客户想要离开这个平台,他们可以轻松转向其他开源平台)。这并不是说Hortonworks完全依赖开源Hadoop技术,而是因为该公司将其所有开发的成果回报给了开源社区,比如Ambari,这个工具就是由Hortonworks开发而成,用来填充集群管理项目漏洞。Hortonworks的方案已经得到了Teradata、Microsoft、Red Hat和SAP这些供应商的支持。
IBM
当企业考虑一些大的IT项目时,很多人首先会想到IBM。IBM是Hadoop项目的主要参与者之一,Forrester称IBM已有100多个Hadoop部署,它的很多客户都有PB级的数据。IBM在网格计算、全球数据中心和企业大数据项目实施等众多领域有着丰富的经验。“IBM计划继续整合SPSS分析、高性能计算、BI工具、数据管理和建模、应对高性能计算的工作负载管理等众多技术。”
Intel
和AWS类似,英特尔不断改进和优化Hadoop使其运行在自己的硬件上,具体来说,就是让Hadoop运行在其至强芯片上,帮助用户打破Hadoop系统的一些限制,使软件和硬件结合的更好,英特尔的Hadoop发行版在上述方面做得比较好。Forrester指出英特尔在最近才推出这个产品,所以公司在未来还有很多改进的可能,英特尔和微软都被认为是Hadoop市场上的潜力股。
MapR Technologies
MapR的Hadoop发行版目前为止也许是最好的了,不过很多人可能都没有听说过。Forrester对Hadoop用户的调查显示,MapR的评级最高,其发行版在架构和数据处理能力上都获得了最高分。MapR已将一套特殊功能融入其Hadoop发行版中。例如网络文件系统(NFS)、灾难恢复以及高可用性功能。Forrester说MapR在Hadoop市场上没有Cloudera和Hortonworks那样的知名度,MapR要成为一个真正的大企业,还需要加强伙伴关系和市场营销。
Microsoft
微软在开源软件问题上一直很低调,但在大数据形势下,它不得不考虑让Windows也兼容Hadoop,它还积极投入到开源项目中,以更广泛地推动Hadoop生态圈的发展。我们可以在微软的公共云Windows Azure HDInsight产品中看到其成果。微软的Hadoop服务基于Hortonworks的发行版,而且是为Azure量身定制的。
微软也有一些其他的项目,包括名为Polybase的项目,让Hadoop查询实现了SQLServer查询的一些功能。Forrester说:“微软在数据库、数据仓库、云、OLAP、BI、电子表格(包括PowerPivot)、协作和开发工具市场上有很大优势,而且微软拥有庞大的用户群,但要在Hadoop这个领域成为行业领导者还有很远的路要走。”
Pivotal Software
EMC和Vmware部分大数据业务分拆组合产生了Pivotal。Pivotal一直努力构建一个性能优越的Hadoop发行版,为此,Pivotal在开源Hadoop的基础上又添加了一些新的工具,包括一个名为HAWQ的SQL引擎以及一个专门解决大数据问题的Hadoop应用。Forrester称Pivotal Hadoop平台的优势在于它整合了Pivotal、EMC、Vmware的众多技术,Pivotal的真正优势实际上等于EMC和Vmware两大公司为其撑腰。到目前为止,Pivotal的用户还不到100个,而且大多是中小型客户。
Teradata
对于Teradata来说,Hadoop既是一种威胁也是一种机遇。数据管理,特别是关于SQL和关系数据库这一领域是Teradata的专长。所以像Hadoop这样的NoSQL平台崛起可能会威胁到Teradata。相反,Teradata接受了Hadoop,通过与Hortonworks合作,Teradata在Hadoop平台集成了SQL技术,这使Teradata的客户可以在Hadoop平台上方便地使用存储在Teradata数据仓库中的数据。
AMPLab
通过将数据转变为信息,我们才可以理解世界,而这也正是AMPLab所做的。AMPLab致力于机器学习、数据挖掘、数据库、信息检索、自然语言处理和语音识别等多个领域,努力改进对信息包括不透明数据集内信息的甄别技术。除了Spark,开源分布式SQL查询引擎Shark也源于AMPLab,Shark具有极高的查询效率,具有良好的兼容性和可扩展性。近几年的发展使计算机科学进入到全新的时代,而AMPLab为我们设想一个运用大数据、云计算、通信等各种资源和技术灵活解决难题的方案,以应对越来越复杂的各种难题。
在大数据时代,“多种架构支持多类应用”成为数据库行业应对大数据的基本思路,数据库行业出现互为补充的三大阵营,适用于事务处理应用的OldSQL、适用于数据分析应用的NewSQL和适用于互联网应用的NoSQL。但在一些复杂的应用场景中,单一数据库架构都不能完全满足应用场景对海量结构化和非结构化数据的存储管理、复杂分析、关联查询、实时性处理和控制建设成本等多方面的需要,因此不同架构数据库混合部署应用成为满足复杂应用的必然选择。不同架构数据库混合使用的模式可以概括为:OldSQL+NewSQL、OldSQL+NoSQL、NewSQL+NoSQL三种主要模式。下面通过三个案例对不同架构数据库的混合应用部署进行介绍。
OldSQL+NewSQL 在数据中心类应用中混合部署
采用OldSQL+NewSQL模式构建数据中心,在充分发挥OldSQL数据库的事务处理能力的同时,借助NewSQL在实时性、复杂分析、即席查询等方面的独特优势,以及面对海量数据时较强的扩展能力,满足数据中心对当前“热”数据事务型处理和海量历史“冷”数据分析两方面的需求。OldSQL+NewSQL模式在数据中心类应用中的互补作用体现在,OldSQL弥补了NewSQL不适合事务处理的不足,NewSQL弥补了OldSQL在海量数据存储能力和处理性能方面的缺陷。
商业银行数据中心采用OldSQL+NewSQL混合部署方式搭建,OldSQL数据库满足各业务系统数据的归档备份和事务型应用,NewSQL MPP数据库集群对即席查询、多维分析等应用提供高性能支持,并且通过MPP集群架构实现应对海量数据存储的扩展能力。
商业银行数据中心存储架构
与传统的OldSQL模式相比,商业银行数据中心采用OldSQL+NewSQL混合搭建模式,数据加载性能提升3倍以上,即席查询和统计分析性能提升6倍以上。NewSQL MPP的高可扩展性能够应对新的业务需求,可随着数据量的增长采用集群方式构建存储容量更大的数据中心。
OldSQL+NoSQL 在互联网大数据应用中混合部署
在互联网大数据应用中采用OldSQL+NoSQL混合模式,能够很好的解决互联网大数据应用对海量结构化和非结构化数据进行存储和快速处理的需求。在诸如大型电子商务平台、大型SNS平台等互联网大数据应用场景中,OldSQL在应用中负责高价值密度结构化数据的存储和事务型处理,NoSQL在应用中负责存储和处理海量非结构化的数据和低价值密度结构化数据。OldSQL+NoSQL模式在互联网大数据应用中的互补作用体现在,OldSQL弥补了NoSQL在ACID特性和复杂关联运算方面的不足,NoSQL弥补了OldSQL在海量数据存储和非结构化数据处理方面的缺陷。
数据魔方是淘宝网的一款数据产品,主要提供行业数据分析、店铺数据分析。淘宝数据产品在存储层采用OldSQL+NoSQL混合模式,由基于MySQL的分布式关系型数据库集群MyFOX和基于HBase的NoSQL存储集群Prom组成。由于OldSQL强大的语义和关系表达能力,在应用中仍然占据着重要地位,目前存储在MyFOX中的统计结果数据已经达到10TB,占据着数据魔方总数据量的95%以上。另一方面,NoSQL作为SQL的有益补充,解决了OldSQL数据库无法解决的全属性选择器等问题。
淘宝海量数据产品技术架构
基于OldSQL+NoSQL混合架构的特点,数据魔方目前已经能够提供压缩前80TB的数据存储空间,支持每天4000万的查询请求,平均响应时间在28毫秒,足以满足未来一段时间内的业务增长需求。
NewSQL+NoSQL 在行业大数据应用中混合部署
行业大数据与互联网大数据的区别在于行业大数据的价值密度更高,并且对结构化数据的实时处理、复杂的多表关联分析、即席查询、数据强一致性等都比互联网大数据有更高的要求。行业大数据应用场景主要是分析类应用,如:电信、金融、政务、能源等行业的决策辅助、预测预警、统计分析、经营分析等。
在行业大数据应用中采用NewSQL+NoSQL混合模式,充分利用NewSQL在结构化数据分析处理方面的优势,以及NoSQL在非结构数据处理方面的优势,实现NewSQL与NoSQL的功能互补,解决行业大数据应用对高价值结构化数据的实时处理、复杂的多表关联分析、即席查询、数据强一致性等要求,以及对海量非结构化数据存储和精确查询的要求。在应用中,NewSQL承担高价值密度结构化数据的存储和分析处理工作,NoSQL承担存储和处理海量非结构化数据和不需要关联分析、Ad-hoc查询较少的低价值密度结构化数据的工作。
当前电信运营商在集中化BI系统建设过程中面临着数据规模大、数据处理类型多等问题,并且需要应对大量的固定应用,以及占统计总数80%以上的突发性临时统计(ad-hoc)需求。在集中化BI系统的建设中采用NewSQL+NoSQL混搭的模式,充分利用NewSQL在复杂分析、即席查询等方面处理性能的优势,及NoSQL在非结构化数据处理和海量数据存储方面的优势,实现高效低成本。
集中化BI系统数据存储架构
集中化BI系统按照数据类型和处理方式的不同,将结构化数据和非结构化数据分别存储在不同的系统中:非结构化数据在Hadoop平台上存储与处理;结构化、不需要关联分析、Ad-hoc查询较少的数据保存在NoSQL数据库或Hadoop平台;结构化、需要关联分析或经常ad-hoc查询的数据,保存在NewSQL MPP数据库中,短期高价值数据放在高性能平台,中长期放在低成本产品中。
结语
当前信息化应用的多样性、复杂性,以及三种数据库架构各自所具有的优势和局限性,造成任何一种架构的数据库都不能完全满足应用需求,因此不同架构数据库混合使用,从而弥补其他架构的不足成为必然选择。根据应用场景采用不同架构数据库进行组合搭配,充分发挥每种架构数据库的特点和优势,并且与其他架构数据库形成互补,完全涵盖应用需求,保证数据资源的最优化利用,将成为未来一段时期内信息化应用主要采用的解决方式。
目前在国内市场上,OldSQL主要为Oracle、IBM等国外数据库厂商所垄断,达梦、金仓等国产厂商仍处于追赶状态;南大通用凭借国产新型数据库GBase 8a异军突起,与EMC的Greenplum和HP的Vertica跻身NewSQL市场三强;NoSQL方面用户则大多采用Hadoop开源方案。
NewSQL是对一类现代关系型数据库的统称,这类数据库对于一般的OLTP读写请求提供可横向扩展的性能,同时支持事务的ACID保证。这些系统既拥有NoSQL数据库的扩展性,又保持传统数据库的事务特性。NewSQL重新将“应用程序逻辑与数据操作逻辑应该分离”的理念带回到现代数据库的世界,这也验证了历史的发展总是呈现出螺旋上升的形式。
在21世纪00年代中,出现了许多数据仓库系统 (如 Vertica,Greeplum 和AsterData),这些以处理OLAP 请求为设计目标的系统并不在本文定义的NewSQL范围内。OLAP 数据库更关注针对海量数据的大型、复杂、只读的查询,查询时间可能持续秒级、分钟级甚至更长。
NoSQL的拥趸普遍认为阻碍传统数据库横向扩容、提高可用性的原因在于ACID保证和关系模型,因此NoSQL运动的核心就是放弃事务强一致性以及关系模型,拥抱最终一致性和其它数据模型 (如 key/value,graphs 和Documents)。
两个最著名的NoSQL数据库就是Google的BigTable和Amazon的Dynamo,由于二者都未开源,其它组织就开始推出类似的开源替代项目,包括Facebook的 Cassandra (基于BigTable和Dynamo)、PowerSet的 Hbase(基于BigTable)。有一些创业公司也加入到这场NoSQL运动中,它们不一定是受BigTable和Dynamo的启发,但都响应了NoSQL的哲学,其中最出名的就是MongoDB。
在21世纪00年代末,市面上已经有许多供用户选择的分布式数据库产品。使用NoSQL的优势在于应用开发者可以更关注应用逻辑本身,而非数据库的扩展性问题;但与此同时许多应用,如金融系统、订单处理系统,由于无法放弃事务的一致性要求被拒之门外。
一些组织,如Google,已经发现他们的许多工程师将过多的精力放在处理数据一致性上,这既暴露了数据库的抽象、又提高了代码的复杂度,这时候要么选择回到传统DBMS时代,用更高的机器配置纵向扩容,要么选择回到中间件时代,开发支持分布式事务的中间件。这两种方案成本都很高,于是NewSQL运动开始酝酿。
NewSQL数据库设计针对的读写事务有以下特点:
1、耗时短。
2、使用索引查询,涉及少量数据。
3、重复度高,通常使用相同的查询语句和不同的查询参考。
也有一些学者认为NewSQL系统是特指实现上使用Lock-free并发控制技术和share-nothing架构的数据库。所有我们认为是NewSQL的数据库系统确实都有这样的特点。
就目前而言,大数据涉及到了很多技术,这些技术都是能够帮助大家更好地去理解大数据的相关知识,在这篇文章中我们重点为大家介绍一下商业智能和非关系型数据库,希望通过我们的介绍能够让大家真正了解这些关于大数据的知识。
1.商业智能
商业智能一般被叫做BI,即Business Intelligence的缩写,商业智能是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决策。。当时将商业智能定义为一类由数据仓库、查询报表、数据分析、数据挖掘、数据备份和恢复等部分组成的、以帮助企业决策为目的技术及其应用。为了将数据转化为知识,需要利用数据仓库、联机分析处理(OLAP)工具和数据挖掘等技术。因此,从技术层面上讲,商业智能不是什么新技术,它只是数据仓库、OLAP和数据挖掘等技术的综合运用。由此可见,有关大数据的词汇之间都是有一定的联系的。
2.如何看待商业智能?
把商业智能看成一种解决方案应该比较恰当。商业智能的关键是从许多来自不同的企业运作系统的数据中提取出有用的数据并进行清理,以保证数据的正确性,然后经过抽取、转换和装载,合并到一个企业级的数据仓库里,从而得到企业数据的一个全局视图,在此基础上利用合适的查询和分析工具、数据挖掘工具、OLAP工具等对其进行分析和处理,最后将知识呈现给管理者,为管理者的决策过程提供数据支持。这也是商业智能为什么火热的原因。
3.非关系型数据库
非关系型数据库,简称NoSQL。我们通过百度百科上面得知NoSQL最早出现于1998 年,是由Carlo Storzzi最早开发的个轻量、开源、不兼容SQL 功能的关系型数据库,2009 年,在一次分布式开源数据库的讨论会上,再次提出了NOSQL 的概念,此时NOSQL主要是指I非关系型、分布式、不提供ACID (数据库事务处理的四个本要素)的数据库设计模式。很多数据科学家对NOSQL 最普遍的定义是“非关联型的”,强调Key-Value存储和文档数据库的优点,至此,NoSQL 开始正式出现在世人面前。
在这篇文章中我们给大家介绍了关于商业智能以及非关系型数据库的知识,上述提到的内容都是需要我们去学习和熟悉的内容,如果真的打算大数据行业的朋友一定要认真学起来 哟!
目录
- 数据库分类维度:关系型/非关系型、交易型/分析型
- NoSQL数据库的进一步分类
- OLTP市场规模:关系型数据库仍占营收大头
- 数据库市场份额:云服务和新兴厂商主导NoSQL
- 开源数据库 vs. 商业数据库
- 数据库三大阵营:传统厂商和云服务提供商
最近由于时间原因我写东西少了,在公众号上也转载过几篇搞数据库朋友的大作。按说我算是外行,没资格在这个领域品头论足,而当我看到下面这份报告时立即产生了学习的兴趣,同时也想就能看懂的部分写点心得体会分享给大家。
可能本文比较适合普及性阅读,让数据库领域资深的朋友见笑了:)
数据库分类维度:关系型/非关系型、交易型/分析型
首先是分类维度,上图中的纵轴分类为Relational Database(关系型数据库,RDBMS)和Nonrelational Database (非关系型数据库,NoSQL),横轴的分类为Operational(交易型,即OLTP)和Analytical(分析型,即OLAP)。
按照习惯我们先看关系型数据库,左上角的交易型类别中包括大家熟悉的商业数据库Oracle、MS SQL Server、DB2、Infomix,也包括开源领域流行的MySQL(MariaDB是它的一个分支)、PostgreSQL,还有云上面比较常见的SQL Azure和Amazon Aurora等。
比较有意思的是,SAP HANA正好位于交易型和分析型的中间分界处,不要忘了SAP还收购了Sybase,尽管后者今天不够风光了,而早年微软的SQL Server都是来源于Sybase。Sybase的ASE数据库和分析型Sybase IQ还是存在的。
右上角的分析型产品中包括几款知名的列式数据仓库Pivotal Greenplum、Teradata和IBM Netezza(已宣布停止支持),来自互联网巨头的Google Big Query和Amazon RedShift。至于Oracle Exadata一体机,它上面运行的也是Oracle数据库,其最初设计用途是OLAP,而在后来发展中也可以良好兼顾OLTP,算是一个跨界产品吧。
再来看非关系型数据库,左下角的交易型产品中,有几个我看着熟悉的MongoDB、Redis、Amazon DynamoDB和DocumentDB等;右下角的分析型产品包括著名的Hadoop分支Cloudera、Hortonworks(这2家已并购),Bigtable(来自Google,Hadoop中的HBase是它的开源实现)、Elasticsearch等。
显然非关系型数据库的分类要更加复杂,产品在应用中的差异化也比传统关系型数据库更大。Willian Blair很负责任地对它们给出了进一步的分类。
NoSQL数据库的进一步分类
上面这个图表应该说很清晰了。非关系型数据库可以分为Document-based Store(基于文档的存储)、Key-Value Store(键值存储)、Graph-based(图数据库)、Time Series(时序数据库),以及Wide Cloumn-based Store(宽列式存储)。
我们再来看下每个细分类别中的产品:
文档存储 :MongoDB、Amazon DocumentDB、Azure Cosmos DB等
Key-Value存储 :Redis Labs、Oracle Berkeley DB、Amazon DynamoDB、Aerospike等
图数据库 :Neo4j等
时序数据库 :InfluxDB等
WideCloumn :DataStax、Cassandra、Apache HBase和Bigtable等
多模型数据库 :支持上面不只一种类别特性的NoSQL,比如MongoDB、Redis Labs、Amazon DynamoDB和Azure Cosmos DB等。
OLTP市场规模:关系型数据库仍占营收大头
上面这个基于IDC数据的交易型数据库市场份额共有3个分类,其中深蓝色部分的关系型数据库(RDBMS,在这里不统计数据挖掘/分析型数据库)占据80%以上的市场。
Dynamic Database(DDMS,动态数据库管理系统,同样不统计Hadoop)就是我们前面聊的非关系型数据库。这部分市场显得小(但发展势头看好),我觉得与互联网等大公司多采用开源+自研,而不买商业产品有关。
而遵循IDC的统计分类,在上图灰色部分的“非关系型数据库市场”其实另有定义,参见下面这段文字:
数据库市场份额:云服务和新兴厂商主导NoSQL
请注意,这里的关系型数据库统计又包含了分析型产品。Oracle营收份额42%仍居第一,随后排名依次为微软、IBM、SAP和Teradata。
代表非关系型数据库的DDMS分类中(这里同样加入Hadoop等),云服务和新兴厂商成为了主导,微软应该是因为云SQL Server的基础而小幅领先于AWS,这2家一共占据超过50%的市场,接下来的排名是Google、Cloudera和Hortonworks(二者加起来13%)。
上面是IDC传统分类中的“非关系型数据库”,在这里IBM和CA等应该主要是针对大型机的产品,InterSystems有一款在国内医疗HIS系统中应用的Caché数据库(以前也是运行在Power小机上比较多)。我就知道这些,余下的就不瞎写了。
开源数据库 vs. 商业数据库
按照流行度来看,开源数据库从2013年到现在一直呈现增长,已经快要追上商业数据库了。
商业产品在关系型数据库的占比仍然高达60.5%,而上表中从这列往左的分类都是开源占优:
Wide Cloumn:开源占比81.8%;
时序数据库:开源占比80.7%;
文档存储:开源占比80.0%;
Key-Value存储:开源占比72.2%;
图数据库:开源占比68.4%;
搜索引擎:开源占比65.3%
按照开源License的授权模式,上面这个三角形越往下管的越宽松。比如MySQL属于GPL,在互联网行业用户较多;而PostgreSQL属于BSD授权,国内有不少数据库公司的产品就是基于Postgre哦。
数据库三大阵营:传统厂商和云服务提供商
前面在讨论市场份额时,我提到过交易型数据库的4个巨头仍然是Oracle、微软、IBM和SAP,在这里William Blair将他们归为第一阵营。
随着云平台的不断兴起,AWS、Azure和GCP(Google Cloud Platform)组成了另一个阵营,在国外分析师的眼里还没有BAT,就像有的朋友所说,国内互联网巨头更多是自身业务导向的,在本土发展公有云还有些优势,短时间内将技术输出到国外的难度应该还比较大。(当然我并不认为国内缺优秀的DBA和研发人才)
第三个阵容就是规模小一些,但比较专注的数据库玩家。
接下来我再带大家简单过一下这前两个阵容,看看具体的数据库产品都有哪些。
甲骨文的产品,我相对熟悉一些的有Oracle Database、MySQL以及Exadata一体机。
IBM DB2也是一个庞大的家族,除了传统针对小型机、x86(好像用的人不多)、z/OS大型机和for i的版本之外,如今也有了针对云和数据挖掘的产品。记得抱枕大师对Informix的技术比较推崇,可惜这个产品发展似乎不太理想。
微软除了看家的SQL Server之外,在Azure云上还能提供MySQL、PostgreSQL和MariaDB开源数据库。应该说他们是传统软件License+PaaS服务两条腿走路的。
如今人们一提起SAP的数据库就想起HANA,之前从Sybase收购来的ASE(Adaptive Server Enterprise)和IQ似乎没有之前发展好了。
在云服务提供商数据库的3巨头中,微软有SQL Server的先天优势,甚至把它移植到了Linux拥抱开源平台。关系型数据库的创新方面值得一提的是Amazon Aurora和Google Spanner(也有非关系型特性),至于它们具体好在哪里我就不装内行了:)
非关系型数据库则是Amazon全面开花,这与其云计算业务发展早并且占据优势有关。Google当年的三篇经典论文对业界影响深远,Yahoo基于此开源的Hadoop有一段时间几乎是大数据的代名词。HBase和Hive如今已不再是人们讨论的热点,而Bigtable和BigQuery似乎仍然以服务Google自身业务为主,毕竟GCP的规模比AWS要小多了。
最后这张DB-Engines的排行榜,相信许多朋友都不陌生,今年3月已经不是最新的数据,在这里列出只是给大家一个参考。该排行榜几乎在每次更新时,都会有国内数据库专家撰写点评。
以上是我周末的学习笔记,班门弄斧,希望对大家有帮助。
参考资料《Database Software Market:The Long-Awaited Shake-up》
扩展阅读:《 数据库存储:互相最想知道的事 》
尊重知识,转载时请保留全文。感谢您的阅读和支持!