新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
import matplotlib.pyplot as plt
成都创新互联服务项目包括双台子网站建设、双台子网站制作、双台子网页制作以及双台子网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,双台子网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到双台子省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!
plt.scatter(xdata,ydata)
(xdata,ydata为两个需要作图的数据集)
今天开始琢磨用Python画图,没使用之前是一脸懵的,我使用的开发环境是Pycharm,这个输出的是一行行命令,这个图画在哪里呢?
搜索之后发现,它会弹出一个对话框,然后就开始画了,比如下图
第一个常用的库是Turtle,它是Python语言中一个很流行的绘制图像的函数库,这个词的意思就是乌龟,你可以想象下一个小乌龟在一个x和y轴的平面坐标系里,从原点开始根据指令控制,爬行出来就是绘制的图形了。
它最常用的指令就是旋转和移动,比如画个圆,就是绕着圆心移动;再比如上图这个怎么画呢,其实主要就两个命令:
turtle.forward(200)
turtle.left(170)
第一个命令是移动200个单位并画出来轨迹
第二个命令是画笔顺时针转170度,注意此时并没有移动,只是转角度
然后呢? 循环重复就画出来这个图了
好玩吧。
有需要仔细研究的可以看下这篇文章 ,这个牛人最后用这个库画个移动的钟表,太赞了。
Turtle虽好玩,但是我想要的是我给定数据,然后让它画图,这里就找到另一个常用的画图的库了。
Matplotlib是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图。其中,matplotlib的pyplot模块一般是最常用的,可以方便用户快速绘制二维图表。
使用起来也挺简单,
首先import matplotlib.pyplot as plt 导入画图的图。
然后给定x和y,用这个命令plt.plot(x, y)就能画图了,接着用plt.show()就可以把图形展示出来。
接着就是各种完善,比如加标题,设定x轴和y轴标签,范围,颜色,网格等等,在 这篇文章里介绍的很详细。
现在互联网的好处就是你需要什么内容,基本上都能搜索出来,而且还是免费的。
我为什么要研究这个呢?当然是为了用,比如我把比特币的曲线自己画出来可好?
假设现在有个数据csv文件,一列是日期,另一列是比特币的价格,那用这个命令画下:
这两列数据读到pandas中,日期为df['time']列,比特币价格为df['ini'],那我只要使用如下命令
plt.plot(df['time'], df['ini'])
plt.show()
就能得到如下图:
自己画的是不是很香,哈哈!
然后呢,我在上篇文章 中介绍过求Ahr999指数,那可不可以也放到这张图中呢?不就是加一条命令嘛
plt.plot(df['time'], df['Ahr999'])
图形如下:
但是,Ahr999指数怎么就一条线不动啊, 原来两个Y轴不一致,显示出来太怪了,需要用多Y轴,问题来了。
继续谷歌一下,把第二个Y轴放右边就行了,不过呢得使用多图,重新绘制
fig = plt.figure() # 多图
ax1 = fig.add_subplot(111)
ax1.plot(df['time'], df['ini'], label="BTC price") # 绘制第一个图比特币价格
ax1.set_ylabel('BTC price') # 加上标签
# 第二个直接对称就行了
ax2 = ax1.twinx()# 在右边增加一个Y轴
ax2.plot(df['time'], df['Ahr999'], 'r', label="ahr999") # 绘制第二个图Ahr999指数,红色
ax2.set_ylim([0, 50])# 设定第二个Y轴范围
ax2.set_ylabel('ahr999')
plt.grid(color="k", linestyle=":")# 网格
fig.legend(loc="center")#图例
plt.show()
跑起来看看效果,虽然丑了点,但终于跑通了。
这样就可以把所有指数都绘制到一张图中,等等,三个甚至多个Y轴怎么加?这又是一个问题,留给爱思考爱学习的你。
有了自己的数据,建立自己的各个指数,然后再放到图形界面中,同时针对异常情况再自动进行提醒,比如要抄底了,要卖出了,用程序做出自己的晴雨表。
输入以下代码导入我们用到的函数库。
import numpy as np
import matplotlib.pyplot as plt
x=np.arange(0,5,0.1);
y=np.sin(x);
plt.plot(x,y)
采用刚才代码后有可能无法显示下图,然后在输入以下代码就可以了:
plt.show()
raw_input获取的输入是字符串,不能直接用np.array,需要用split进行切分,然后强制转化成数值类型,才能用plot函数
我把你的代码稍微修改了一下,可能不太漂亮,不过能运行了
x=[1,2,3]
a = raw_input('function')
a = a.split(' ')#依空格对字符串a进行切分,如果是用逗号分隔,则改成a.split(',')
b = []
for i in range(len(a)):#把切分好的字符强制转化成int类型,如果是小数,将int改为float
b.append(int(a[i]))
plt.plot(x, b, label='x', color="green", linewidth=1)
用python怎样画出如题所示的正余弦函数图像? 如此编写代码,使其中两个轴、图例、刻度,大小,LaTex公式等要素与原图一致,需要用到的代码如下,没有缩进:
#-*-codeing:utf-8;-*-
from matplotlib import pyplot as plt
import numpy as np
a=np.linspace(0,360,980)
b=np.sin(a/180*np.pi)
c=np.cos(a/180*np.pi)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_xlim([0, 360])
ax.plot(a,b,label=r"$y=\sin(\theta)$")
ax.plot(a,c,label=r"$y=\cos(\theta)$")
ax.grid(True)
ax.set_ylabel(r"$y$")
ax.set_xlabel(r"$\theta$")
plt.xticks(np.arange(0,360+1,45))
plt.title("Sine Cosine Waves")
plt.legend()
plt.savefig("SinCosWaveDegFont.jpg")
plt.show()
代码运行show的窗口图
代码的截图
代码输出的文件的图
不写出y=f(x)这样的表达式,由隐函数的等式直接绘制图像,以x²+y²+xy=1的图像为例,使用sympy间接调用matplotlib工具的代码和该二次曲线图像如下(注意python里的乘幂符号是**而不是^,还有,python的sympy工具箱的等式不是a==b,而是a-b或者Eq(a,b),这几点和matlab的区别很大)
直接在命令提示行的里面运行代码的效果
from sympy import *;
x,y=symbols('x y');
plotting.plot_implicit(x**2+y**2+x*y-1);