新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
Bazel:来自Google的构建工具,可以快速、可靠地构建代码。官网
创新互联建站主打移动网站、成都做网站、成都网站设计、网站改版、网络推广、网站维护、域名与空间、等互联网信息服务,为各行业提供服务。在技术实力的保障下,我们为客户承诺稳定,放心的服务,根据网站的内容与功能再决定采用什么样的设计。最后,要实现符合网站需求的内容、功能与设计,我们还会规划稳定安全的技术方案做保障。
Gradle:使用Groovy(非XML)进行增量构建,可以很好地与Maven依赖管理配合工作。官网
Buck:Facebook构建工具。官网
字节码操作
编程方式操作字节码的开发库。
ASM:通用底层字节码操作和分析开发库。官网
Byte Buddy:使用流式API进一步简化字节码生成。官网
Byteman:在运行时通过DSL(规则)操作字节码进行测试和故障排除。官网
Javassist:一个简化字节码编辑尝试。官网
集群管理
在集群内动态管理应用程序的框架。
Apache Aurora:Apache Aurora是一个Mesos框架,用于长时间运行服务和定时任务(cron job)。官网
Singularity:Singularity是一个Mesos框架,方便部署和操作。它支持Web Service、后台运行、调度作业和一次性任务。官网
代码分析
测量代码指标和质量工具。
Checkstyle:代码编写规范和标准静态分析工具。官网
Error Prone:将常见编程错误作为运行时错误报告。官网
FindBugs:通过字节码静态分析查找隐藏bug。官网
jQAssistant:使用基于Neo4J查询语言进行代码静态分析。官网
PMD:对源代码分析查找不良的编程习惯。官网
SonarQube:通过插件集成其它分析组件,对过去一段时间内的数据进行统计。官网
编译器生成工具
用来创建解析器、解释器或编译器的框架。
ANTLR:复杂的全功能自顶向下解析框架。官网
JavaCC:JavaCC是更加专门的轻量级工具,易于上手且支持语法超前预测。官网
外部配置工具
支持外部配置的开发库。
config:针对JVM语言的配置库。官网
owner:减少冗余配置属性。官网
约束满足问题求解程序
帮助解决约束满足问题的开发库。
Choco:可直接使用的约束满足问题求解程序,使用了约束规划技术。官网
JaCoP:为FlatZinc语言提供了一个接口,可以执行MiniZinc模型。官网
OptaPlanner:企业规划与资源调度优化求解程序。官网
Sat4J:逻辑代数与优化问题最先进的求解程序。官网
持续集成
Bamboo:Atlassian解决方案,可以很好地集成Atlassian的其他产品。可以选择开源许可,也可以购买商业版。官网
CircleCI:提供托管服务,可以免费试用。官网
Codeship:提供托管服务,提供有限的免费模式。官网
fabric8:容器集成平台。官网
Go:ThoughtWork开源解决方案。官网
Jenkins:支持基于服务器的部署服务。官网
TeamCity:JetBrain的持续集成解决方案,有免费版。官网
Travis:通常用作开源项目的托管服务。官网
Buildkite: 持续集成工具,用简单的脚本就能设置pipeline,而且能快速构建,可以免费试用。官网
CSV解析
简化CSV数据读写的框架与开发库
uniVocity-parsers:速度最快功能最全的CSV开发库之一,同时支持TSV与固定宽度记录的读写。官网
数据库
简化数据库交互的相关工具。
Apache Phoenix:HBase针对低延时应用程序的高性能关系数据库层。官网
Crate:实现了数据同步、分片、缩放、复制的分布式数据存储。除此之外还可以使用基于SQL的语法跨集群查询。官网
Flyway:简单的数据库迁移工具。官网
H2:小型SQL数据库,以可以作为内存数据库使用著称。官网
HikariCP:高性能JDBC连接工具。官网
JDBI:便捷的JDBC抽象。官网
Protobuf:Google数据交换格式。官网
SBE:简单二进制编码,是最快速的消息格式之一。官网
Wire:整洁轻量级协议缓存。官网
帮实现依赖翻转范式的开发库。 官网
Apache DeltaSpike:CDI扩展框架。官网
Dagger2:编译时注入框架,不需要使用反射。官网
Guice:可以匹敌Dagger的轻量级注入框架。官网
HK2:轻量级动态依赖注入框架。官网
开发流程增强工具
从最基本的层面增强开发流程。
ADT4J:针对代数数据类型的JSR-269代码生成器。官网
AspectJ:面向切面编程(AOP)的无缝扩展。官网
Auto:源代码生成器集合。官网
DCEVM:通过修改JVM在运行时支持对已加载的类进行无限次重定义。官网
HotswapAgent:支持无限次重定义运行时类与资源。官网
Immutables:类似Scala的条件类。官网
JHipster:基于Spring Boot与AngularJS应用程序的Yeoman源代码生成器。官网
JRebel:无需重新部署,可以即时重新加载代码与配置的商业软件。官网
Lombok:减少冗余的代码生成器。官网
Spring Loaded:类重载代理。官网
vert.x:多语言事件驱动应用框架。官网
分布式应用
用来编写分布式容错应用的开发库和框架。
Akka:用来编写分布式容错并发事件驱动应用程序的工具和运行时。官网
Apache Storm:实时计算系统。官网
Apache ZooKeeper:针对大型分布式系统的协调服务,支持分布式配置、同步和名称注册。官网
Hazelcast:高可扩展内存数据网格。官网
Hystrix:提供延迟和容错。官网
JGroups:提供可靠的消息传递和集群创建的工具。官网
Orbit:支持虚拟角色(Actor),在传统角色的基础上增加了另外一层抽象。官网
Quasar:为JVM提供轻量级线程和角色。官网
分布式数据库
对应用程序而言,在分布式系统中的数据库看起来就像是只有一个数据源。
Apache Cassandra:列式数据库,可用性高且没有单点故障。官网
Apache HBase:针对大数据的Hadoop数据库。官网
Druid:实时和历史OLAP数据存储,在聚集查询和近似查询方面表现不俗。官网
Infinispan:针对缓存的高并发键值对数据存储。官网
发布
以本机格式发布应用程序的工具。
Bintray:发布二进制文件版本控制工具。可以于Maven或Gradle一起配合使用。提供开源免费版本和几种商业收费版本。官网
Central Repository:最大的二进制组件仓库,面向开源社区提供免费服务。Apache Maven默认使用Central 官网Repository,也可以在所有其他构建工具中使用。
IzPack:为跨平台部署建立创作工具(Authoring Tool)。官网
JitPack:打包GitHub仓库的便捷工具。可根据需要构建Maven、Gradle项目,发布可立即使用的组件。官网
Launch4j:将JAR包装为轻量级本机Windows可执行程序。官网
Nexus:支持代理和缓存功能的二进制管理工具。官网
packr:将JAR、资源和JVM打包成Windows、Linux和Mac OS X本地发布文件。官网
文档处理工具
处理Office文档的开发库。
Apache POI:支持OOXML规范(XLSX、DOCX、PPTX)以及OLE2规范(XLS、DOC、PPT)。官网
documents4j:使用第三方转换器进行文档格式转换,转成类似MS Word这样的格式。官网
jOpenDocument:处理OpenDocument格式(由Sun公司提出基于XML的文档格式)。官网
函数式编程
函数式编程支持库。
Cyclops:支持一元(Monad)操作和流操作工具类、comprehension(List语法)、模式匹配、trampoline等特性。官网
Fugue:Guava的函数式编程扩展。官网
Functional Java:实现了多种基础和高级编程抽象,用来辅助面向组合开发(composition-oriented development)。官网
Javaslang:一个函数式组件库,提供持久化数据类型和函数式控制结构。官网
jOOλ:旨在填补Java 8 lambda差距的扩展,提供了众多缺失的类型和一组丰富的顺序流API。官网
游戏开发
游戏开发框架。
jMonkeyEngine:现代3D游戏开发引擎。官网
libGDX:全面的跨平台高级框架。官网
LWJGL:对OpenGL/CL/AL等技术进行抽象的健壮框架。官网
GUI
现代图形化用户界面开发库。
JavaFX:Swing的后继者。官网
Scene Builder:开发JavaFX应用的可视化布局工具。官网
高性能计算
涵盖了从集合到特定开发库的高性能计算相关工具。
Agrona:高性能应用中常见的数据结构和工具方法。官网
Disruptor:线程间消息传递开发库。官网
fastutil:快速紧凑的特定类型集合(Collection)。官网
GS Collections:受Smalltalk启发的集合框架。官网
HPPC:基础类型集合。官网
Javolution:实时和嵌入式系统的开发库。官网
JCTools:JDK中缺失的并发工具。官网
Koloboke:Hash set和hash map。官网
Trove:基础类型集合。官网
High-scale-bli:Cliff Click 个人开发的高性能并发库官网
IDE
简化开发的集成开发环境。
Eclipse:老牌开源项目,支持多种插件和编程语言。官网
IntelliJ IDEA:支持众多JVM语言,是安卓开发者好的选择。商业版主要针对企业客户。官网
NetBeans:为多种技术提供集成化支持,包括Java SE、Java EE、数据库访问、HTML5
Imgscalr:纯Java 2D实现,简单、高效、支持硬件加速的图像缩放开发库。官网
Picasso:安卓图片下载和图片缓存开发库。官网
Thumbnailator:Thumbnailator是一个高质量Java缩略图开发库。官网
ZXing:支持多种格式的一维、二维条形码图片处理开发库。官网
im4java: 基于ImageMagick或GraphicsMagick命令行的图片处理开发库,基本上ImageMagick能够支持的图片格式和处理方式都能够处理。官网
Apache Batik:在Java应用中程序以SVG格式显示、生成及处理图像的工具集,包括SVG解析器、SVG生成器、SVG DOM等模块,可以集成使用也可以单独使用,还可以扩展自定义的SVG标签。官网
JSON
简化JSON处理的开发库。
Genson:强大且易于使用的Java到JSON转换开发库。官网
Gson:谷歌官方推出的JSON处理库,支持在对象与JSON之间双向序列化,性能良好且可以实时调用。官网
Jackson:与GSON类似,在频繁使用时性能更佳。官网
LoganSquare:基于Jackson流式API,提供对JSON解析和序列化。比GSON与Jackson组合方式效果更好。官网
Fastjson:一个Java语言编写的高性能功能完善的JSON库。官网
Kyro:快速、高效、自动化的Java对象序列化和克隆库。官网
JVM与JDK
目前的JVM和JDK实现。
JDK 9:JDK 9的早期访问版本。官网
OpenJDK:JDK开源实现。官网
基于JVM的语言
除Java外,可以用来编写JVM应用程序的编程语言。
Scala:融合了面向对象和函数式编程思想的静态类型编程语言。官网
Groovy:类型可选(Optionally typed)的动态语言,支持静态类型和静态编译。目前是一个Apache孵化器项目。官网
Clojure:可看做现代版Lisp的动态类型语言。官网
Ceylon:RedHat开发的面向对象静态类型编程语言。官网
Kotlin:JetBrain针对JVM、安卓和浏览器提供的静态类型编程语言。官网
Xtend:一种静态编程语言,能够将其代码转换为简洁高效的Java代码,并基于JVM运行。官网
日志
记录应用程序行为日志的开发库。
Apache Log4j 2:使用强大的插件和配置架构进行完全重写。官网
kibana:分析及可视化日志文件。官网
Logback:强健的日期开发库,通过Groovy提供很多有趣的选项。官网
logstash:日志文件管理工具。官网
Metrics:通过JMX或HTTP发布参数,并且支持存储到数据库。官网
SLF4J:日志抽象层,需要与具体的实现配合使用。官网
机器学习
提供具体统计算法的工具。其算法可从数据中学习。
Apache Flink:快速、可靠的大规模数据处理引擎。官网
Apache Hadoop:在商用硬件集群上用来进行大规模数据存储的开源软件框架。官网
Apache Mahout:专注协同过滤、聚类和分类的可扩展算法。官网
Apache Spark:开源数据分析集群计算框架。官网
DeepDive:从非结构化数据建立结构化信息并集成到已有数据库的工具。官网
Deeplearning4j:分布式多线程深度学习开发库。官网
H2O:用作大数据统计的分析引擎。官网
Weka:用作数据挖掘的算法集合,包括从预处理到可视化的各个层次。官网
QuickML:高效机器学习库。官网、GitHub
消息传递
在客户端之间进行消息传递,确保协议独立性的工具。
Aeron:高效可扩展的单播、多播消息传递工具。官网
Apache ActiveMQ:实现JMS的开源消息代理(broker),可将同步通讯转为异步通讯。官网
Apache Camel:通过企业级整合模式(Enterprise Integration Pattern EIP)将不同的消息传输API整合在一起。官网
Apache Kafka:高吞吐量分布式消息系统。官网
Hermes:快速、可靠的消息代理(Broker),基于Kafka构建。官网
JBoss HornetQ:清晰、准确、模块化,可以方便嵌入的消息工具。官网
JeroMQ:ZeroMQ的纯Java实现。官网
Smack:跨平台XMPP客户端函数库。官网
Openfire:是开源的、基于XMPP、采用Java编程语言开发的实时协作服务器。 Openfire安装和使用都非常简单,并可利用Web界面进行管理。 官网GitHub
Spark:是一个开源,跨平台IM客户端。它的特性支持集组聊天,电话集成和强大安全性能。如果企业内部部署IM使用Openfire+Spark是最佳的组合。 官网 GitHub
Tigase: 是一个轻量级的可伸缩的 Jabber/XMPP 服务器。无需其他第三方库支持,可以处理非常高的复杂和大量的用户数,可以根据需要进行水平扩展。 官网
杂项
未分类其它资源。
Design Patterns:实现并解释了最常见的设计模式。官网
Jimfs:内存文件系统。官网
Lanterna:类似curses的简单console文本GUI函数库。官网
LightAdmin:可插入式CRUD UI函数库,可用来快速应用开发。官网
OpenRefine:用来处理混乱数据的工具,包括清理、转换、使用Web Service进行扩展并将其关联到数据库。官网
RoboVM:Java编写原生iOS应用。官网
Quartz:强大的任务调度库.官网
应用监控工具
监控生产环境中应用程序的工具。
AppDynamics:性能监测商业工具。官网
JavaMelody:性能监测和分析工具。官网
Kamon:Kamon用来监测在JVM上运行的应用程序。官网
New Relic:性能监测商业工具。官网
SPM:支持对JVM应用程序进行分布式事务追踪的性能监测商业工具。官网
Takipi:产品运行时错误监测及调试商业工具。官网
原生开发库
用来进行特定平台开发的原生开发库。
JNA:不使用JNI就可以使用原生开发库。此外,还为常见系统函数提供了接口。官网
自然语言处理
用来专门处理文本的函数库。
Apache OpenNLP:处理类似分词等常见任务的工具。官网
CoreNLP:斯坦佛CoreNLP提供了一组基础工具,可以处理类似标签、实体名识别和情感分析这样的任务。官网
LingPipe:一组可以处理各种任务的工具集,支持POS标签、情感分析等。官网
Mallet:统计学自然语言处理、文档分类、聚类、主题建模等。官网
网络
网络编程函数库。
Async Http Client:异步HTTP和WebSocket客户端函数库。官网
Grizzly:NIO框架,在Glassfish中作为网络层使用。官网
Netty:构建高性能网络应用程序开发框架。官网
OkHttp:一个Android和Java应用的HTTP+SPDY客户端。官网
Undertow:基于NIO实现了阻塞和非阻塞API的Web服务器,在WildFly中作为网络层使用。官网
ORM
处理对象持久化的API。
Ebean:支持快速数据访问和编码的ORM框架。官网
EclipseLink:支持许多持久化标准,JPA、JAXB、JCA和SDO。官网
Hibernate:广泛使用、强健的持久化框架。Hibernate的技术社区非常活跃。官网
MyBatis:带有存储过程或者SQL语句的耦合对象(Couples object)。官网
OrmLite:轻量级开发包,免除了其它ORM产品中的复杂性和开销。官网
Nutz:另一个SSH。官网,Github
JFinal:JAVA WEB + ORM框架。官网,Github
用来帮助创建PDF文件的资源。
Apache FOP:从XSL-FO创建PDF。官网
Apache PDFBox:用来创建和操作PDF的工具集。官网
DynamicReports:JasperReports的精简版。官网
flyingsaucer:XML/XHTML和CSS 2.1渲染器。官网
iText:一个易于使用的PDF函数库,用来编程创建PDF文件。注意,用于商业用途时需要许可证。官网
JasperReports:一个复杂的报表引擎。官网
性能分析
性能分析、性能剖析及基准测试工具。
jHiccup:提供平台中JVM暂停的日志和记录。官网
JMH:JVM基准测试工具。官网
JProfiler:商业分析器。官网
LatencyUtils:测量和报告延迟的工具。官网
VisualVM:对运行中的应用程序信息提供了可视化界面。官网
YourKit Java Profiler:商业分析器。官网
响应式开发库
用来开发响应式应用程序的开发库。
Reactive Streams:异步流处理标准,支持非阻塞式反向压力(backpressure)。官网
Reactor:构建响应式快速数据(fast-data)应用程序的开发库。官网
RxJava:通过JVM可观察序列(observable sequence)构建异步和基于事件的程序。官网
REST框架
用来创建RESTful 服务的框架。
Dropwizard:偏向于自己使用的Web框架。用来构建Web应用程序,使用了Jetty、Jackson、Jersey和Metrics。官网
Feign:受Retrofit、JAXRS-2.0和WebSocket启发的HTTP客户端连接器(binder)。官网
Jersey:JAX-RS参考实现。官网
RESTEasy:经过JAX-RS规范完全认证的可移植实现。官网
RestExpress:一个Java类型安全的REST客户端。官网
RestX:基于注解处理和编译时源码生成的框架。官网
Retrofit:类型安全的REST客户端。官网
Spark:受到Sinatra启发的Java REST框架。官网
Swagger:Swagger是一个规范且完整的框架,提供描述、生产、消费和可视化RESTful Web Service。官网
Blade:国人开发的一个轻量级的MVC框架. 它拥有简洁的代码,优雅的设计。官网
科学计算与分析
用于科学计算和分析的函数库。
DataMelt:用于科学计算、数据分析及数据可视化的开发环境。官网
JGraphT:支持数学图论对象和算法的图形库。官网
JScience:用来进行科学测量和单位的一组类。官网
搜索引擎
文档索引引擎,用于搜索和分析。
Apache Solr:一个完全的企业搜索引擎。为高吞吐量通信进行了优化。官网
Elasticsearch:一个分布式、支持多租户(multitenant)全文本搜索引擎。提供了RESTful Web接口和无schema的JSON文档。官网
Apache Lucene:是一个开放源代码的全文检索引擎工具包,是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎,部分文本分析引擎。官网
安全
用于处理安全、认证、授权或会话管理的函数库。
Apache Shiro:执行认证、授权、加密和会话管理。官网
Bouncy Castle,涵盖了从基础的帮助函数到PGP/SMIME操作。官网:多途加密开发库。支持JCA提供者(JCA provider)
Cryptomator:在云上进行客户端跨平台透明加密。官网
Keycloak:为浏览器应用和RESTful Web Service集成SSO和IDM。目前还处于beta版本,但是看起来非常有前途。官网
PicketLink:PicketLink是一个针对Java应用进行安全和身份认证管理的大型项目(Umbrella Project)。官网
序列化
用来高效处理序列化的函数库。
FlatBuffers:高效利用内存的序列化函数库,无需解包和解析即可高效访问序列化数据。官网
Kryo:快速、高效的对象图形序列化框架。官网
FST:提供兼容JDK的高性能对象图形序列化。官网
MessagePack:一种高效的二进制序列化格式。官网
应用服务器
用来部署应用程序的服务器。
Apache Tomcat:针对Servlet和JSP的应用服务器,健壮性好且适用性强。官网
Apache TomEE:Tomcat加Java EE。官网
Jetty:轻量级、小巧的应用服务器,通常会嵌入到项目中。官网
WebSphere Liberty:轻量级、模块化应用服务器,由IBM开发。官网
WildFly:之前被称作JBoss,由Red Hat开发。支持很多Java EE功能。官网
模板引擎
在模板中替换表达式的工具。
Apache Velocity:提供HTML页面模板、email模板和通用开源代码生成器模板。官网
FreeMarker:通用模板引擎,不需要任何重量级或自己使用的依赖关系。官网
Handlebars.java:使用Java编写的模板引擎,逻辑简单,支持语义扩展(semantic Mustache)。官网
Thymeleaf:旨在替换JSP,支持XML文件的工具。官网
测试
测试内容从对象到接口,涵盖性能测试和基准测试工具。
Apache JMeter:功能性测试和性能评测。官网
Arquillian:集成测试和功能行测试平台,集成Java EE容器。官网
AssertJ:支持流式断言提高测试的可读性。官网
Awaitility:用来同步异步操作的DSL。官网
Cucumber:BDD测试框架。官网
Gatling:设计为易于使用、可维护的和高性能负载测试工具。官网
Hamcrest:可用来灵活创建意图(intent)表达式的匹配器。官网
JMockit:用来模拟静态、final方法等。官网
JUnit:通用测试框架。官网
Mockito:在自动化单元测试中创建测试对象,为TDD或BDD提供支持。官网
PowerMock: 支持模拟静态方法、构造函数、final类和方法、私有方法以及移除静态初始化器的模拟工具。官网
REST Assured:为REST/HTTP服务提供方便测试的Java DSL。官网
Selenide:为Selenium提供精准的周边API,用来编写稳定且可读的UI测试。官网
Selenium:为Web应用程序提供可移植软件测试框架。官网
Spock:JUnit-compatible framework featuring an expressive Groovy-derived specification language.官网兼容JUnit框架,支持衍生的Groovy范的语言。
TestNG:测试框架。官网
Truth:Google的断言和命题(proposition)框架。官网
Unitils:模块化测试函数库,支持单元测试和集成测试。官网
WireMock:Web Service测试桩(Stub)和模拟函数。官网
通用工具库
通用工具类函数库。
Apache Commons:提供各种用途的函数,比如配置、验证、集合、文件上传或XML处理等。官网
args4j:命令行参数解析器。官网
CRaSH:为运行进行提供CLI。官网
Gephi:可视化跨平台网络图形化操作程序。官网
Guava:集合、缓存、支持基本类型、并发函数库、通用注解、字符串处理、I/O等。官网
JADE:构建、调试多租户系统的框架和环境。官网
javatuples:正如名字表示的那样,提供tuple支持。尽管目前tuple的概念还有留有争议。官网
JCommander:命令行参数解析器。官网
Protégé:提供存在论(ontology)编辑器以及构建知识系统的框架。官网
网络爬虫
用于分析网站内容的函数库。
Apache Nutch:可用于生产环境的高度可扩展、可伸缩的网络爬虫。官网
Crawler4j:简单的轻量级网络爬虫。官网
JSoup:刮取、解析、操作和清理HTML。官网
Web框架
用于处理Web应用程序不同层次间通讯的框架。
Apache Tapestry:基于组件的框架,使用Java创建动态、强健的、高度可扩展的Web应用程序。官网
Apache Wicket:基于组件的Web应用框架,与Tapestry类似带有状态显示GUI。官网
Google Web Toolkit:一组Web开发工具集,包含在客户端将Java代码转为JavaScript的编译器、XML解析器、RCP 官网API、JUnit集成、国际化支持和GUI控件。
Grails:Groovy框架,旨在提供一个高效开发环境,使用约定而非配置、没有XML并支持混入(mixin)。官网
Ninja:Java全栈Web开发框架。非常稳固、快速和高效。官网
Pippo:小型、高度模块化的类Sinatra框架。官网
Play:使用约定而非配置,支持代码热加载并在浏览器中显示错误。官网
PrimeFaces:JSF框架,提供免费和带支持的商业版本。包括若干前端组件。官网
Ratpack:一组Java开发函数库,用于构建快速、高效、可扩展且测试完备的HTTP应用程序。官网
Spring Boot:微框架,简化了Spring新程序的开发过程。官网
Spring:旨在简化Java EE的开发过程,提供依赖注入相关组件并支持面向切面编程。官网
Vaadin:基于GWT构建的事件驱动框架。使用服务端架构,客户端使用Ajax。官网
Blade:国人开发的一个轻量级的MVC框架. 它拥有简洁的代码,优雅的设计。官网
业务流程管理套件
流程驱动的软件系统构建。
jBPM:非常灵活的业务流程管理框架,致力于构建开发与业务分析人员之间的桥梁。官网
Activity:轻量级工作流和业务流程管理框架。官网 github
资源
社区
当前人工智能(AI)是IT行业的一个热点领域,但是要想从事AI领域的相关岗位往往需要有丰富的知识结构和较强的研发能力,目前AI领域的人才招聘往往以研究生为主,因此要想在AI领域谋求一份技术岗位并不容易。实际上,当前很多从业经验比较丰富的程序员要想转向AI领域也存在一定的难度,不少程序员也会选择通过读研的方式进入AI研发领域。
虽然站在技术的角度来看,当前已经进入了人工智能时代,典型的代表就是人工智能平台的推出,但是人工智能行业依然处在发展的初期,AI领域依然有大量的课题需要公关,而且人工智能产品要想落地应用还需要解决一系列行业壁垒。所以,目前人工智能领域的人才招聘更看重应聘者的研发能力和创新能力,这一点对于初学者来说还是具有很大难度的。
从技术体系结构来看,目前AI领域的研发集中在六大方面,分别是机器学习、计算机视觉、自然语言处理、机器人学、知识表示和自动推理,这六大方面的研发都需要算法、数据和算力的支撑,所以从事人工智能领域的岗位,不仅需要有扎实的数学基础,还需要有相应的学习环境。
对于基础比较薄弱的初学者来说,选择学习Java编程语言还是相对比较现实的,通过学习Java编程语言可以积累大量的开发知识,未来也可以选择进入AI领域。对于Java程序员来说,可以先进入大数据开发领域,然后再通过掌握机器学习知识从而全面进入AI领域
《Java机器学习》百度网盘pdf最新全集下载:
链接:
?pwd=7vbh 提取码: 7vbh
简介:本书涵盖了机器学习中的经典技术,如分类、聚类、降维、离群值检测、半监督学习和主动学习。同时介绍了近期高深的主题,包括流数据学习、深度学习以及大数据学习的挑战。每一章指定一个主题,包括通过案例研究,介绍前沿的基于Java的工具和软件,以及完整的知识发现周期:数据采集、实验设计、建模、结果及评估。每一章都是独立的,提供了很大的使用灵活性。附带的网站提供了源码和数据。对于学生和数据分析从业员来说,这确实很难得,大家可以直接用刚学到的方法进行实验,或者通过将这些方法应用到真实环境中,加深对它们的理解。