新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
在JAVA中实现二叉树,程序如下(转载)
我们提供的服务有:网站设计制作、网站设计、微信公众号开发、网站优化、网站认证、驻马店ssl等。为成百上千企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的驻马店网站制作公司
//********************************************************************
//filename: BinaryTreeTest.java
//purpose: test a binarytree with java
//date: 2002/12/18
//author: flyfan
//ver: 0.1
//********************************************************************
public class BinaryTreeTest
{
public static void main(String args[])
{
BinaryTreeTest b=new BinaryTreeTest();
int data[]={12,11,34,45,67,89,56,43,22,98};
BinaryTree root =new BinaryTree(data[0]);
System.out.print("二叉树的中的数据: ");
for(int i=1;i{
root.insertTree(root,data[i]);
System.out.print(data[i-1]+";");
}
System.out.println(data[data.length-1]);
int key=Integer.parseInt(args[0]);
if(b.searchkey(root,key))
{
System.out.println("找到了:"+key);
}
else
{
System.out.println("没有找到:"+key);
}
}
public boolean searchkey(BinaryTree root, int key)
{
boolean bl=false;
if(root==null)
{
bl=false;
return bl;
}
else if(root.data==key)
{
bl=true;
return bl;
}
else if(key=root.data)
{
return searchkey(root.rightpoiter,key);
}
return searchkey(root.leftpoiter,key);
}
}
class BinaryTree
{
int data;
BinaryTree leftpoiter;
BinaryTree rightpoiter;
BinaryTree(int data)
{
this.data=data;
leftpoiter=null;
rightpoiter=null;
}
public void insertTree(BinaryTree root, int data)
{
if(data=root.data)
{
if(root.rightpoiter==null)
{
root.rightpoiter=new BinaryTree(data);
}
else
{
insertTree(root.rightpoiter,data);
}
}
else
{
if(root.leftpoiter==null)
{
root.leftpoiter=new BinaryTree(data);
}
else
{
insertTree(root.leftpoiter,data);
}
}
}
}
//end
二叉树的定义
二叉树(binary tree)是结点的有限集合,这个集合或者空,或者由一个根及两个互不相交的称为这个根的左子树或右子树构成.
从定义可以看出,二叉树包括:1.空树 2.只有一个根节点 3.只有左子树 4.只有右子树 5.左右子树都存在 有且仅有这5种表现形式
二叉树的遍历分为三种:前序遍历 中序遍历 后序遍历
前序遍历:按照“根左右”,先遍历根节点,再遍历左子树 ,再遍历右子树
中序遍历:按照“左根右“,先遍历左子树,再遍历根节点,最后遍历右子树
后续遍历:按照“左右根”,先遍历左子树,再遍历右子树,最后遍历根节点
其中前,后,中指的是每次遍历时候的根节点被遍历的顺序
具体实现看下图:
public class BinaryNode {
Object element;
BinaryNode left;
BinaryNode right;
}
import java.util.*;
public class Queue {
protected LinkedList list;
// Postcondition: this Queue object has been initialized.
public Queue() {
list = new LinkedList();
} // default constructor
// Postcondition: the number of elements in this Queue object has been
// returned.
public int size() {
return list.size();
} // method size
// Postcondition: true has been returned if this Queue object has no
// elements. Otherwise, false has been returned.
public boolean isEmpty() {
return list.isEmpty();
} // method isEmpty
// Postconditon: A copy of element has been inserted at the back of this
// Queue object. The averageTime (n) is constant and
// worstTime (n) is O (n).
public void enqueue(Object element) {
list.addLast(element);
} // method enqueue
// Precondition: this Queue object is not empty. Otherwise,
// NoSuchElementException will be thrown.
// Postcondition: The element that was at the front of this Queue object -
// just before this method was called -- has been removed
// from this Queue object and returned.
public Object dequeue() {
return list.removeFirst();
} // method dequeue
// Precondition: this Queue object is not empty. Otherwise,
// NoSuchElementException will be thrown.
// Postcondition: the element at index 0 in this Queue object has been
// returned.
public Object front() {
return list.getFirst();
} // method front
} // Queue class
import java.io.IOException;
public class BinaryTree {
BinaryNode root;
public BinaryTree() {
super();
// TODO 自动生成构造函数存根
root=this.createPre();
}
public BinaryNode createPre()
//按照先序遍历的输入方法,建立二叉树
{
BinaryNode t=null;
char ch;
try {
ch = (char)System.in.read();
if(ch==' ')
t=null;
else
{
t=new BinaryNode();
t.element=(Object)ch;
t.left=createPre();
t.right=createPre();
}
} catch (IOException e) {
// TODO 自动生成 catch 块
e.printStackTrace();
}
return t;
}
public void inOrder()
{
this.inOrder(root);
}
public void inOrder(BinaryNode t)
//中序遍历二叉树
{
if(t!=null)
{
inOrder(t.left);
System.out.print(t.element);
inOrder(t.right);
}
}
public void postOrder()
{
this.postOrder(root);
}
public void postOrder(BinaryNode t)
//后序遍历二叉树
{
if(t!=null)
{
postOrder(t.left);
System.out.print(t.element);
postOrder(t.right);
}
}
public void preOrder()
{
this.preOrder(root);
}
public void preOrder(BinaryNode t)
//前序遍历二叉树
{
if(t!=null)
{
System.out.print(t.element);
preOrder(t.left);
preOrder(t.right);
}
}
public void breadthFirst()
{
Queue treeQueue=new Queue();
BinaryNode p;
if(root!=null)
treeQueue.enqueue(root);
while(!treeQueue.isEmpty())
{
System.out.print(((BinaryNode)(treeQueue.front())).element);
p=(BinaryNode)treeQueue.dequeue();
if(p.left!=null)
treeQueue.enqueue(p.left);
if(p.right!=null)
treeQueue.enqueue(p.right);
}
}
}
public class BinaryTreeTest {
/**
* @param args
*/
public static void main(String[] args) {
// TODO 自动生成方法存根
BinaryTree tree = new BinaryTree();
System.out.println("先序遍历:");
tree.preOrder();
System.out.println();
System.out.println("中序遍历:");
tree.inOrder();
System.out.println();
System.out.println("后序遍历:");
tree.postOrder();
System.out.println();
System.out.println("层次遍历:");
tree.breadthFirst();
System.out.println();
}
}
import java.util.ArrayList;
// 树的一个节点
class TreeNode {
Object _value = null; // 他的值
TreeNode _parent = null; // 他的父节点,根节点没有PARENT
ArrayList _childList = new ArrayList(); // 他的孩子节点
public TreeNode( Object value, TreeNode parent ){
this._parent = parent;
this._value = value;
}
public TreeNode getParent(){
return _parent;
}
public String toString() {
return _value.toString();
}
}
public class Tree {
// 给出宽度优先遍历的值数组,构建出一棵多叉树
// null 值表示一个层次的结束
// "|" 表示一个层次中一个父亲节点的孩子输入结束
// 如:给定下面的值数组:
// { "root", null, "left", "right", null }
// 则构建出一个根节点,带有两个孩子("left","right")的树
public Tree( Object[] values ){
// 创建根
_root = new TreeNode( values[0], null );
// 创建下面的子节点
TreeNode currentParent = _root; // 用于待创建节点的父亲
//TreeNode nextParent = null;
int currentChildIndex = 0; // 表示 currentParent 是他的父亲的第几个儿子
//TreeNode lastNode = null; // 最后一个创建出来的TreeNode,用于找到他的父亲
for ( int i = 2; i values.length; i++ ){
// 如果null ,表示下一个节点的父亲是当前节点的父亲的第一个孩子节点
if ( values[i] == null ){
currentParent = (TreeNode)currentParent._childList.get(0);
currentChildIndex = 0;
continue;
}
// 表示一个父节点的所有孩子输入完毕
if ( values[i].equals("|") ){
if ( currentChildIndex+1 currentParent._childList.size() ){
currentChildIndex++;
currentParent = (TreeNode)currentParent._parent._childList.get(currentChildIndex);
}
continue;
}
TreeNode child = createChildNode( currentParent, values[i] );
}
}
TreeNode _root = null;
public TreeNode getRoot(){
return _root;
}
/**
// 按宽度优先遍历,打印出parent子树所有的节点
private void printSteps( TreeNode parent, int currentDepth ){
for ( int i = 0; i parent._childList.size(); i++ ){
TreeNode child = (TreeNode)parent._childList.get(i);
System.out.println(currentDepth+":"+child);
}
if ( parent._childList.size() != 0 ) System.out.println(""+null);// 为了避免叶子节点也会打印null
//打印 parent 同层的节点的孩子
if ( parent._parent != null ){ // 不是root
int i = 1;
while ( i parent._parent._childList.size() ){// parent 的父亲还有孩子
TreeNode current = (TreeNode)parent._parent._childList.get(i);
printSteps( current, currentDepth );
i++;
}
}
// 递归调用,打印所有节点
for ( int i = 0; i parent._childList.size(); i++ ){
TreeNode child = (TreeNode)parent._childList.get(i);
printSteps( child, currentDepth+1 );
}
}
// 按宽度优先遍历,打印出parent子树所有的节点
public void printSteps(){
System.out.println(""+_root);
System.out.println(""+null);
printSteps(_root, 1 );
}**/
// 将给定的值做为 parent 的孩子,构建节点
private TreeNode createChildNode( TreeNode parent, Object value ){
TreeNode child = new TreeNode( value , parent );
parent._childList.add( child );
return child;
}
public static void main(String[] args) {
Tree tree = new Tree( new Object[]{ "root", null,
"left", "right", null,
"l1","l2","l3", "|", "r1","r2",null } );
//tree.printSteps();
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(0) )._childList.get(0) );
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(0) )._childList.get(1) );
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(0) )._childList.get(2) );
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(1) )._childList.get(0) );
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(1) )._childList.get(1) );
}
}
java:二叉树添加和查询方法
package arrays.myArray;
public class BinaryTree {
private Node root;
// 添加数据
public void add(int data) {
// 递归调用
if (null == root)
root = new Node(data, null, null);
else
addTree(root, data);
}
private void addTree(Node rootNode, int data) {
// 添加到左边
if (rootNode.data data) {
if (rootNode.left == null)
rootNode.left = new Node(data, null, null);
else
addTree(rootNode.left, data);
} else {
// 添加到右边
if (rootNode.right == null)
rootNode.right = new Node(data, null, null);
else
addTree(rootNode.right, data);
}
}
// 查询数据
public void show() {
showTree(root);
}
private void showTree(Node node) {
if (node.left != null) {
showTree(node.left);
}
System.out.println(node.data);
if (node.right != null) {
showTree(node.right);
}
}
}
class Node {
int data;
Node left;
Node right;
public Node(int data, Node left, Node right) {
this.data = data;
this.left = left;
this.right = right;
}
}
//类Node定义二叉树结点的数据结构;
//一个结点应包含结点值,左子结点的引用和右子结点的引用
class Node{
public Node left; //左子结点
public Node right; //右子结点
public int value; //结点值
public Node(int val){
value = val;
}
}
public class Traversal
{
//read()方法将按照前序遍历的方式遍历输出二叉树的结点值
//此处采用递归算法会比较简单,也容易理解,当然也可以用
//循环的方法遍历,但会比较复杂,也比较难懂。二叉树遍历
//用递归算法最为简单,因为每个结点的遍历方式都是,根,
//左,右,递归的调用可以让每个结点以这种方式遍历
public static void read(Node node){
if(node != null){
System.out.println(node.value);//输出当前结点的值
if(node.left != null)
read(node.left); //递归调用 先读左结点
if(node.right != null)
read(node.right); //递归调用 后读右结点
}
}
public static void main(String[] args){
//初始化5个结点,分别初始值为1,2,3,4,5
Node n1 = new Node(1);
Node n2 = new Node(2);
Node n3 = new Node(3);
Node n4 = new Node(4);
Node n5 = new Node(5);
//构建二叉树,以n1为根结点
n1.left = n2;
n1.right = n5;
n2.left = n3;
n2.right = n4;
read(n1);
}
}
注释和代码都是我自己写的,如果楼主觉得有的注释多余可以自己删除一些!代码我都编译通过,并且运行结果如你提的要求一样!你只要把代码复制编译就可以了,注意要以文件名Traversal.java来保存,否则编译不通过,因为main函数所在的类是public类型的!
class TreeNode {
public TreeNode left;
public TreeNode right;
public int value;
public TreeNode(TreeNode left, TreeNode right, int value) {
this.left = left;
this.right = right;
this.value = value;
}
}
public class BinaryTree {
public static int getTreeHeight(TreeNode root) {
if (root == null)
return 0;
if (root.left == null root.right == null)
return 1;
return 1 + Math
.max(getTreeHeight(root.left), getTreeHeight(root.right));
}
public static void recursePreOrder(TreeNode root) {
if (root == null)
return;
System.out.println(root.value);
if (root.left != null)
recursePreOrder(root.left);
if (root.right != null)
recursePreOrder(root.right);
}
public static void stackPreOrder(TreeNode root) {
Stack stack = new Stack();
if (root == null)
return;
stack.push(root);
System.out.println(root.value);
TreeNode temp = root.left;
while (temp != null) {
stack.push(temp);
System.out.println(temp.value);
temp = temp.left;
}
temp = (TreeNode) stack.pop();
while (temp != null) {
temp = temp.right;
while (temp != null) {
stack.push(temp);
System.out.println(temp.value);
temp = temp.left;
}
if (stack.empty())
break;
temp = (TreeNode) stack.pop();
}
}
public static void recurseInOrder(TreeNode root) {
if (root == null)
return;
if (root.left != null)
recurseInOrder(root.left);
System.out.println(root.value);
if (root.right != null)
recurseInOrder(root.right);
}
public static void stackInOrder(TreeNode root) {
Stack stack = new Stack();
if (root == null)
return;
else
stack.push(root);
TreeNode temp = root.left;
while (temp != null) {
stack.push(temp);
temp = temp.left;
}
temp = (TreeNode) stack.pop();
while (temp != null) {
System.out.println(temp.value);
temp = temp.right;
while (temp != null) {
stack.push(temp);
temp = temp.left;
}
if (stack.empty())
break;
temp = (TreeNode) stack.pop();
}
}
public static void main(String[] args) {
TreeNode node1 = new TreeNode(null, null, 1);
TreeNode node2 = new TreeNode(null, node1, 2);
TreeNode node3 = new TreeNode(null, null, 3);
TreeNode node4 = new TreeNode(node2, node3, 4);
TreeNode node5 = new TreeNode(null, null, 5);
TreeNode root = new TreeNode(node4, node5, 0);
System.out.println("Tree Height is " + getTreeHeight(root));
System.out.println("Recurse In Order Traverse");
recurseInOrder(root);
System.out.println("Stack In Order Traverse");
stackInOrder(root);
System.out.println("Recurse Pre Order Traverse");
recursePreOrder(root);
System.out.println("Stack Pre Order Traverse");
stackPreOrder(root);
}
}
可以做个参考