新网创想网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

python求逆函数,python 求逆函数

python如何实现求标准正太分布反函数Φ^(

一般的正态分布可以通过标准正态分布配合数学期望向量和协方差矩阵得到。如下代码,可以得到满足一维和二维正态分布的样本。希望有用,如有错误,欢迎指正!

我们提供的服务有:网站制作、成都网站制作、微信公众号开发、网站优化、网站认证、项城ssl等。为上千企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的项城网站制作公司

用Python实现三阶矩阵的求逆?

你好,下面是一个对应的三阶矩阵求逆的代码

import warnings

warnings.filterwarnings("ignore")

matrix1 = [

[1,2,0,0],

[3,4,0,0],

[0,0,4,1],

[0,0,3,2],

]

matrix2 = [

[1,0,-1,2,1],

[3,2,-3,5,-3],

[2,2,1,4,-2],

[0,4,3,3,1],

[1,0,8,-11,4],

]

matrix3 = [

[1,0,-1,2,1,0,2],

[1,2,-1,3,1,-1,4],

[2,2,1,6,2,1,6],

[-1,4,1,4,0,0,0],

[4,0,-1,21,9,9,9],

[2,4,4,12,5,6,11],

[7,-1,-4,22,7,8,18],

]

def step0(m):

n = len(m)

l = []

for i in range(0,n):

l.append([])

for j in range(0,n):

if i == j:

l[i].append(1)

else:

l[i].append(0)

return l

def step1(m):

n = len(m)

"""交换操作记录数组 swap"""

swap = []

l = []

for i in range(0,n):

swap.append(i)

l.append([])

for j in range(0,n):

l[i].append(0)

"""对每一列进行操作"""

for i in range(0,n):

max_row = m[i][i]

row = i

for j in range(i,n):

if m[j][i] = max_row:

max_row = m[j][i]

#global row

row = j

swap[i] = row

"""交换"""

if row != i:

for j in range(0,n):

m[i][j],m[row][j] = m[row][j],m[i][j]

"""消元"""

for j in range(i+1,n):

if m[j][i] != 0:

l[j][i] = m[j][i] / m[i][i]

for k in range(0,n):

m[j][k] = m[j][k] - (l[j][i] * m[i][k])

return (swap,m,l)

def step2(m):

n = len(m)

long = len(m)-1

l = []

for i in range(0,n):

l.append([])

for j in range(0,n):

l[i].append(0)

for i in range(0,n-1):

for j in range(0,long-i):

if m[long-i-j-1][long-i] != 0 and m[long-i][long-i] != 0:

l[long-i-j-1][long-i] = m[long-i-j-1][long-i] / m[long-i][long-i]

for k in range(0,n):

m[long-i-j-1][k] = m[long-i-j-1][k] - l[long-i-j-1][long-i] * m[long-i][k]

return (m,l)

def step3(m):

n = len(m)

l = []

for i in range(0,n):

l.append(m[i][i])

return l

def gauss(matrix):

n = len(matrix)

new = step0(matrix)

(swap,matrix1,l1) = step1(matrix)

(matrix2,l2) = step2(matrix1)

l3 = step3(matrix2)

for i in range(0,n):

if swap[i] != i:

new[i],new[swap[i]] = new[swap[i]],new[i]

for j in range(i+1,n):

for k in range(0,n):

if l1[j][i] != 0:

new[j][k] = new[j][k] - l1[j][i] * new[i][k]   

for i in range(0,n-1):

for j in range(0,n-i-1):

if l2[n-1-i-j-1][n-1-i] != 0:

for k in range(0,n):

new[n-1-i-j-1][k] = new[n-1-i-j-1][k] - l2[n-1-i-j-1][n-i-1] * new[n-1-i][k]

for i in range(0,n):

for j in range(0,n):

new[i][j] = new[i][j] / l3[i]

return new

x1 = gauss(matrix1)

x2 = gauss(matrix2)

x3 = gauss(matrix3)

print (x1)

print (x2)

print (x3)

Python中的反三角函数求确定角度

acos()方法返回x的反余弦值,以弧度表示。

以下是acos()方法的语法:acos(x)

注意:此函数是无法直接访问的,所以我们需要导入math模块,然后需要用math的静态对象来调用这个函数。x -- 这必须是在范围内的数字值-1到1,如果x大于1,则它会产生一个错误。

扩展资料

python运行的两种方式

1、命令行:python +需要执行的代码

特点:会立即看到效果,用于代码调试,写到内存中,不会永久保存

2、写到文件里面:python +执行文件的位置

特点:可以永久保存。

过程:

1、启动python解释器

2、将内容从硬盘读取到内存中

3、执行python代码

(再次强调:程序在未运行前跟普通文件无异,只有程序在运行时,文件内所写的字符才有特定的语法意义)

逆函数的具体求法

逆函数求法:把表达式中x换成y,y换成x,再解此方程,所得解就是逆函数。

python什么函数能求正切的反三角函数

atan()方法返回x的反正切值,以弧度表示。

Syntax

以下是atan()方法的语法:

atan(x)

注意:此函数是无法直接访问的,所以我们需要导入math模块,然后需要用math的静态对象来调用这个函数。

参数

x -- 这必须是一个数值。

返回值

此方法返回 x 的反正切值,以弧度表示。

例子

下面的例子显示atan()方法的使用。

#!/usr/bin/python

import math

print "atan(0.64) : ", math.atan(0.64)

print "atan(0) : ", math.atan(0)

print "atan(10) : ", math.atan(10)

print "atan(-1) : ", math.atan(-1)

print "atan(1) : ", math.atan(1)

当我们运行上面的程序,它会产生以下结果:

atan(0.64) : 0.569313191101

atan(0) : 0.0

atan(10) : 1.4711276743

atan(-1) : -0.785398163397

atan(1) : 0.785398163397


当前文章:python求逆函数,python 求逆函数
网址分享:http://wjwzjz.com/article/hccscj.html
在线咨询
服务热线
服务热线:028-86922220
TOP