新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
2. 什么是NoSQL?
目前创新互联建站已为成百上千家的企业提供了网站建设、域名、虚拟主机、绵阳服务器托管、企业网站设计、同心网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。
2.1 NoSQL 概述
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,
泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题,包括超大规模数据的存储。
(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。
2.2 NoSQL代表
MongDB、 Redis、Memcache
3. 关系型数据库与NoSQL的区别?
3.1 RDBMS
高度组织化结构化数据
结构化查询语言(SQL)
数据和关系都存储在单独的表中。
数据操纵语言,数据定义语言
严格的一致性
基础事务
ACID
关系型数据库遵循ACID规则
事务在英文中是transaction,和现实世界中的交易很类似,它有如下四个特性:
A (Atomicity) 原子性
原子性很容易理解,也就是说事务里的所有操作要么全部做完,要么都不做,事务成功的条件是事务里的所有操作都成功,只要有一个操作失败,整个事务就失败,需要回滚。比如银行转账,从A账户转100元至B账户,分为两个步骤:1)从A账户取100元;2)存入100元至B账户。这两步要么一起完成,要么一起不完成,如果只完成第一步,第二步失败,钱会莫名其妙少了100元。
C (Consistency) 一致性
一致性也比较容易理解,也就是说数据库要一直处于一致的状态,事务的运行不会改变数据库原本的一致性约束。
I (Isolation) 独立性
所谓的独立性是指并发的事务之间不会互相影响,如果一个事务要访问的数据正在被另外一个事务修改,只要另外一个事务未提交,它所访问的数据就不受未提交事务的影响。比如现有有个交易是从A账户转100元至B账户,在这个交易还未完成的情况下,如果此时B查询自己的账户,是看不到新增加的100元的
D (Durability) 持久性
持久性是指一旦事务提交后,它所做的修改将会永久的保存在数据库上,即使出现宕机也不会丢失。
3.2 NoSQL
代表着不仅仅是SQL
没有声明性查询语言
没有预定义的模式
键 - 值对存储,列存储,文档存储,图形数据库
最终一致性,而非ACID属性
非结构化和不可预知的数据
CAP定理
高性能,高可用性和可伸缩性
分布式数据库中的CAP原理(了解)
CAP定理:
Consistency(一致性), 数据一致更新,所有数据变动都是同步的
Availability(可用性), 好的响应性能
Partition tolerance(分区容错性) 可靠性
P: 系统中任意信息的丢失或失败不会影响系统的继续运作。
定理:任何分布式系统只可同时满足二点,没法三者兼顾。
CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求,
因此,根据 CAP 原理将 NoSQL 数据库分成了满足 CA 原则、满足 CP 原则和满足 AP 原则三 大类:
CA - 单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大。
CP - 满足一致性,分区容忍性的系统,通常性能不是特别高。
AP - 满足可用性,分区容忍性的系统,通常可能对一致性要求低一些。
CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。
而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。
所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。
说明:C:强一致性 A:高可用性 P:分布式容忍性
举例:
CA:传统Oracle数据库
AP:大多数网站架构的选择
CP:Redis、Mongodb
注意:分布式架构的时候必须做出取舍。
一致性和可用性之间取一个平衡。多余大多数web应用,其实并不需要强一致性。
因此牺牲C换取P,这是目前分布式数据库产品的方向。
4. 当下NoSQL的经典应用
当下的应用是 SQL 与 NoSQL 一起使用的。
代表项目:阿里巴巴商品信息的存放。
去 IOE 化。
ps:I 是指 IBM 的小型机,很贵的,好像好几万一台;O 是指 Oracle 数据库,也很贵的,好几万呢;M 是指 EMC 的存储设备,也很贵的。
难点:
数据类型多样性。
数据源多样性和变化重构。
数据源改造而服务平台不需要大面积重构。
nosql是not only sql的意思。是近今年新发展起来的存储系统。当前使用最多的是key-value模型,用于处理超大规模的数据。
以下是摘自百度百科中的一部分
NoSQL 是非关系型数据存储的广义定义。它打破了长久以来关系型数据库与ACID理论大一统的局面。NoSQL 数据存储不需要固定的表结构,通常也不存在连接操作。在大数据存取上具备关系型数据库无法比拟的性能优势。该术语在 2009 年初得到了广泛认同。
当今的应用体系结构需要数据存储在横向伸缩性上能够满足需求。而 NoSQL 存储就是为了实现这个需求。Google 的BigTable与Amazon的Dynamo是非常成功的商业 NoSQL 实现。一些开源的 NoSQL 体系,如Facebook 的Cassandra, Apache 的HBase,也得到了广泛认同。从这些NoSQL项目的名字上看不出什么相同之处:Hadoop、Voldemort、Dynomite,还有其它很多。
NoSQL与关系型数据库设计理念比较
关系型数据库中的表都是存储一些格式化的数据结构,每个元组字段的组成都一样,即使不是每个元组都需要所有的字段,但数据库会为每个元组分配所有的字段,这样的结构可以便于表与表之间进行连接等操作,但从另一个角度来说它也是关系型数据库性能瓶颈的一个因素。而非关系型数据库以键值对存储,它的结构不固定,每一个元组可以有不一样的字段,每个元组可以根据需要增加一些自己的键值对,这样就不会局限于固定的结构,可以减少一些时间和空间的开销。
Hadoop
文件系统:文件系统是用来存储和管理文件,并且提供文件的查询、增加、删除等操作。
直观上的体验:在shell窗口输入 ls 命令,就可以看到当前目录下的文件夹、文件。
文件存储在哪里?硬盘
一台只有250G硬盘的电脑,如果需要存储500G的文件可以怎么办?先将电脑硬盘扩容至少250G,再将文件分割成多块,放到多块硬盘上储存。
通过 hdfs dfs -ls 命令可以查看分布式文件系统中的文件,就像本地的ls命令一样。
HDFS在客户端上提供了查询、新增和删除的指令,可以实现将分布在多台机器上的文件系统进行统一的管理。
在分布式文件系统中,一个大文件会被切分成块,分别存储到几台机器上。结合上文中提到的那个存储500G大文件的那个例子,这500G的文件会按照一定的大小被切分成若干块,然后分别存储在若干台机器上,然后提供统一的操作接口。
看到这里,不少人可能会觉得,分布式文件系统不过如此,很简单嘛。事实真的是这样的么?
潜在问题
假如我有一个1000台机器组成的分布式系统,一台机器每天出现故障的概率是0.1%,那么整个系统每天出现故障的概率是多大呢?答案是(1-0.1%)^1000=63%,因此需要提供一个容错机制来保证发生差错时文件依然可以读出,这里暂时先不展开介绍。
如果要存储PB级或者EB级的数据,成千上万台机器组成的集群是很常见的,所以说分布式系统比单机系统要复杂得多呀。
这是一张HDFS的架构简图:
client通过nameNode了解数据在哪些DataNode上,从而发起查询。此外,不仅是查询文件,写入文件的时候也是先去请教NameNode,看看应该往哪个DateNode中去写。
为了某一份数据只写入到一个Datanode中,而这个Datanode因为某些原因出错无法读取的问题,需要通过冗余备份的方式来进行容错处理。因此,HDFS在写入一个数据块的时候,不会仅仅写入一个DataNode,而是会写入到多个DataNode中,这样,如果其中一个DataNode坏了,还可以从其余的DataNode中拿到数据,保证了数据不丢失。
实际上,每个数据块在HDFS上都会保存多份,保存在不同的DataNode上。这种是牺牲一定存储空间换取可靠性的做法。
接下来我们来看一下完整的文件写入的流程:
大文件要写入HDFS,client端根据配置将大文件分成固定大小的块,然后再上传到HDFS。
读取文件的流程:
1、client询问NameNode,我要读取某个路径下的文件,麻烦告诉我这个文件都在哪些DataNode上?
2、NameNode回复client,这个路径下的文件被切成了3块,分别在DataNode1、DataNode3和DataNode4上
3、client去找DataNode1、DataNode3和DataNode4,拿到3个文件块,通过stream读取并且整合起来
文件写入的流程:
1、client先将文件分块,然后询问NameNode,我要写入一个文件到某个路径下,文件有3块,应该怎么写?
2、NameNode回复client,可以分别写到DataNode1、DataNode2、DataNode3、DataNode4上,记住,每个块重复写3份,总共是9份
3、client找到DataNode1、DataNode2、DataNode3、DataNode4,把数据写到他们上面
出于容错的考虑,每个数据块有3个备份,但是3个备份快都直接由client端直接写入势必会带来client端过重的写入压力,这个点是否有更好的解决方案呢?回忆一下mysql主备之间是通过binlog文件进行同步的,HDFS当然也可以借鉴这个思想,数据其实只需要写入到一个datanode上,然后由datanode之间相互进行备份同步,减少了client端的写入压力,那么至于是一个datanode写入成功即成功,还是需要所有的参与备份的datanode返回写入成功才算成功,是可靠性配置的策略,当然这个设置会影响到数据写入的吞吐率,我们可以看到可靠性和效率永远是“鱼和熊掌不可兼得”的。
潜在问题
NameNode确实会回放editlog,但是不是每次都从头回放,它会先加载一个fsimage,这个文件是之前某一个时刻整个NameNode的文件元数据的内存快照,然后再在这个基础上回放editlog,完成后,会清空editlog,再把当前文件元数据的内存状态写入fsimage,方便下一次加载。
这样,全量回放就变成了增量回放,但是如果NameNode长时间未重启过,editlog依然会比较大,恢复的时间依然比较长,这个问题怎么解呢?
SecondNameNode是一个NameNode内的定时任务线程,它会定期地将editlog写入fsimage,然后情况原来的editlog,从而保证editlog的文件大小维持在一定大小。
NameNode挂了, SecondNameNode并不能替代NameNode,所以如果集群中只有一个NameNode,它挂了,整个系统就挂了。hadoop2.x之前,整个集群只能有一个NameNode,是有可能发生单点故障的,所以hadoop1.x有本身的不稳定性。但是hadoop2.x之后,我们可以在集群中配置多个NameNode,就不会有这个问题了,但是配置多个NameNode,需要注意的地方就更多了,系统就更加复杂了。
俗话说“一山不容二虎”,两个NameNode只能有一个是活跃状态active,另一个是备份状态standby,我们看一下两个NameNode的架构图。
两个NameNode通过JournalNode实现同步editlog,保持状态一致可以相互替换。
因为active的NameNode挂了之后,standby的NameNode要马上接替它,所以它们的数据要时刻保持一致,在写入数据的时候,两个NameNode内存中都要记录数据的元信息,并保持一致。这个JournalNode就是用来在两个NameNode中同步数据的,并且standby NameNode实现了SecondNameNode的功能。
进行数据同步操作的过程如下:
active NameNode有操作之后,它的editlog会被记录到JournalNode中,standby NameNode会从JournalNode中读取到变化并进行同步,同时standby NameNode会监听记录的变化。这样做的话就是实时同步了,并且standby NameNode就实现了SecondNameNode的功能。
优点:
缺点: