新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
本篇内容主要讲解“Kafka+SparkStream+Hive的项目实现方法是什么”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Kafka+SparkStream+Hive的项目实现方法是什么”吧!
十多年的石棉网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。全网整合营销推广的优势是能够根据用户设备显示端的尺寸不同,自动调整石棉建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。成都创新互联从事“石棉网站设计”,“石棉网站推广”以来,每个客户项目都认真落实执行。
目前的项目中需要将kafka队列的数据实时存到hive表中。
import org.apache.kafka.clients.consumer.ConsumerRecord import org.apache.kafka.common.serialization.StringDeserializer import org.apache.spark.rdd.RDD import org.apache.spark.sql.types.{StringType, StructField, StructType} import org.apache.spark.sql.{DataFrame, Row, SaveMode, SparkSession} import org.apache.spark.streaming.{Durations, Seconds, StreamingContext} import org.apache.spark.streaming.dstream.{DStream, InputDStream} import org.apache.spark.streaming.kafka010.{CanCommitOffsets, ConsumerStrategies, HasOffsetRanges, KafkaUtils, LocationStrategies, OffsetRange} import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
def main(args: Array[String]): Unit = { // val conf = new SparkConf() // conf.setMaster("local") // conf.setAppName("SparkStreamingOnKafkaDirect") val spark = SparkSession.builder().appName("test").master("local").enableHiveSupport().getOrCreate() val ssc = new StreamingContext(spark.sparkContext, Durations.seconds(3)) //设置日志级别 ssc.sparkContext.setLogLevel("Error") val kafkaParams = Map[String, Object]( "bootstrap.servers" -> "node01:9092,node02:9092,node03:9092", "key.deserializer" -> classOf[StringDeserializer], "value.deserializer" -> classOf[StringDeserializer], "group.id" -> "MyGroupId", // /** * 当没有初始的offset,或者当前的offset不存在,如何处理数据 * earliest :自动重置偏移量为最小偏移量 * latest:自动重置偏移量为最大偏移量【默认】 * none:没有找到以前的offset,抛出异常 */ "auto.offset.reset" -> "earliest", /** * 当设置 enable.auto.commit为false时,不会自动向kafka中保存消费者offset.需要异步的处理完数据之后手动提交 */ "enable.auto.commit" -> (false: java.lang.Boolean) //默认是true ) //设置Kafka的topic val topics = Array("test") //创建与Kafka的连接,接收数据 /*这里接收到数据的样子 2019-09-26 1569487411604 1235 497 Kafka Register 2019-09-26 1569487411604 1235 497 Kafka Register 2019-09-26 1569487414838 390 778 Flink View */ val stream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String]( ssc, PreferConsistent, // Subscribe[String, String](topics, kafkaParams) ) //对接收到的数据进行处理,打印出来接收到的key跟value,最后放回的是value val transStrem: DStream[String] = stream.map(record => { val key_value = (record.key, record.value) println("receive message key = " + key_value._1) println("receive message value = " + key_value._2) key_value._2 }) //这里用了一下动态创建的Schema val structType: StructType = StructType(List[StructField]( StructField("Date_", StringType, nullable = true), StructField("Timestamp_", StringType, nullable = true), StructField("UserID", StringType, nullable = true), StructField("PageID", StringType, nullable = true), StructField("Channel", StringType, nullable = true), StructField("Action", StringType, nullable = true) )) //因为foreachRDD可以拿到封装到DStream中的rdd,可以对里面的rdd进行, /*代码解释: 先从foreach中拿到一条数据,,在函数map中对接收来的数据用 “\n” 进行切分,放到Row中,用的是动态创建Schema,因为我们需要再将数据存储到hive中,所以需要Schema。 因为map是transformance算子,所以用rdd.count()触发一下 spark.createDataFrame:创建一个DataFrame,因为要注册一个临时表,必须用到DataFrame frame.createOrReplaceTempView("t1"):注册临时表 spark.sql("use spark"):使用 hive 的 spark 库 result.write.mode(SaveMode.Append).saveAsTable("test_kafka"):将数据放到 test_kafka 中 */ transStrem.foreachRDD(one => { val rdd: RDD[Row] = one.map({ a => val arr = a.toString.split("\t") Row(arr(0).toString, arr(1).toString, arr(2).toString, arr(3).toString, arr(4).toString, arr(5).toString) }) rdd.count() val frame: DataFrame = spark.createDataFrame(rdd, structType) // println(" Scheme: "+frame.printSchema()) frame.createOrReplaceTempView("t1") // spark.sql("select * from t1").show() spark.sql("use spark") spark.sql("select * from t1"). write.mode(SaveMode.Append).saveAsTable("test_kafka") } ) /** * 以上业务处理完成之后,异步的提交消费者offset,这里将 enable.auto.commit 设置成false,就是使用kafka 自己来管理消费者offset * 注意这里,获取 offsetRanges: Array[OffsetRange] 每一批次topic 中的offset时,必须从 源头读取过来的 stream中获取,不能从经过stream转换之后的DStream中获取。 */ stream.foreachRDD { rdd => val offsetRanges: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges // some time later, after outputs have completed stream.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges) } ssc.start() ssc.awaitTermination() ssc.stop() }
到此,相信大家对“Kafka+SparkStream+Hive的项目实现方法是什么”有了更深的了解,不妨来实际操作一番吧!这里是创新互联网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!