新网创想网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

Java数组实现堆排序的示例分析

这篇文章主要为大家展示了“Java数组实现堆排序的示例分析”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“Java数组实现堆排序的示例分析”这篇文章吧。

创新互联建站专业成都网站建设、成都网站设计,集网站策划、网站设计、网站制作于一体,网站seo、网站优化、网站营销、软文发稿等专业人才根据搜索规律编程设计,让网站在运行后,在搜索中有好的表现,专业设计制作为您带来效益的网站!让网站建设为您创造效益。

数组全部入堆,再出堆从后向前插入回数组中,数组就从小到大有序了。

public class MaxHeap> {
 private T[] data;
 private int size;
 private int capacity;
 
 public MaxHeap(int capacity) {
  this.data = (T[]) new Comparable[capacity + 1];
  size = 0;
  this.capacity = capacity;
 }
 
 public int size() {
  return this.size;
 }
 
 public boolean isEmpty() {
  return size == 0;
 }
 
 public int getCapacity() {
  return this.capacity;
 }
 
 /**
  * @return 查看最大根(只看不删, 与popMax对比)
  */
 public T seekMax() {
  return data[1];
 }
 
 public void swap(int i, int j) {
  if (i != j) {
   T temp = data[i];
   data[i] = data[j];
   data[j] = temp;
  }
 }
 
 public void insert(T item) {
  size++;
  data[size] = item;
  shiftUp(size);
 }
 
 /**
  * @return 弹出最大根(弹出意味着删除, 与seekMax对比)
  */
 public T popMax() {
  swap(1, size--);
  shiftDown(1);
  return data[size + 1];
 }
 
 /**
  * @param child 孩子节点下角标是child,父节点下角表是child/2
  */
 public void shiftUp(int child) {
  while (child > 1 && data[child].compareTo(data[child / 2]) > 0) {
   swap(child, child / 2);
   child = child / 2;
  }
 }
 
 /**
  * @param a data数组中某个元素的下角标
  * @param b data数组中某个元素的下角标
  * @return 哪个元素大就返回哪个的下角标
  */
 private int max(int a, int b) {
  if (data[a].compareTo(data[b]) < 0) {//如果data[b]大
   return b;//返回b
  } else {//如果data[a]大
   return a;//返回a
  }
 }
 
 /**
  * @param a data数组中某个元素的下角标
  * @param b data数组中某个元素的下角标
  * @param c data数组中某个元素的下角标
  * @return 哪个元素大就返回哪个的下角标
  */
 private int max(int a, int b, int c) {
  int biggest = max(a, b);
  biggest = max(biggest, c);
  return biggest;
 }
 
 
 /**
  * @param father 父节点下角标是father,左右两个孩子节点的下角表分别是:father*2 和 father*2+1
  */
 public void shiftDown(int father) {
  while (true) {
   int lchild = father * 2;//左孩子
   int rchild = father * 2 + 1;//右孩子
   int newFather = father;//newFather即将更新,父、左、右三个结点谁大,newFather就是谁的下角标
 
   if (lchild > size) {//如果该father结点既没有左孩子,也没有右孩子
    return;
   } else if (rchild > size) {//如果该father结点只有左孩子,没有右孩子
    newFather = max(father, lchild);
   } else {//如果该father结点既有左孩子,又有右孩子
    newFather = max(father, lchild, rchild);
   }
 
   if (newFather == father) {//说明father比两个子结点都要大,表名已经是大根堆,不用继续调整了
    return;
   } else {//否则,还需要继续调整堆,直到满足大根堆条件为止
    swap(father, newFather);//值进行交换
    father = newFather;//更新father的值,相当于继续调整shiftDown(newFather)
   }
  }
 }
 
 public static > void sort(T[] arr) {
  int len = arr.length;
  //入堆
  MaxHeap maxHeap = new MaxHeap(len);
  for (int i = 0; i < len; i++) {
   maxHeap.insert(arr[i]);
  }
  //出堆
  for (int i = len - 1; i >= 0; i--) {
   arr[i] = maxHeap.popMax();
  }
 }
 
 public static void printArr(Object[] arr) {
  for (Object o : arr) {
   System.out.print(o);
   System.out.print("\t");
  }
  System.out.println();
 }
 
 public static void main(String args[]) {
  Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
  printArr(arr);//3 5 1 7 2 9 8 0 4 6
  sort(arr);
  printArr(arr);//0 1 2 3 4 5 6 7 8 9
 }
}

堆排序:对数组进行构造堆(最大堆)

public class MaxHeap> {
 private T[] data;
 private int size;
 private int capacity;
 
 public MaxHeap(int capacity) {
  this.capacity = capacity;
  this.size = 0;
  this.data = (T[]) new Comparable[capacity + 1];
 }
 
 public MaxHeap(T[] arr) {//heapify,数组建堆
  capacity = arr.length;
  data = (T[]) new Comparable[capacity + 1];
  System.arraycopy(arr, 0, data, 1, arr.length);
  size = arr.length;
  for (int i = size / 2; i >= 1; i--) {
   shiftDown(i);
  }
 }
 
 public int size() {
  return this.size;
 }
 
 public int getCapacity() {
  return this.capacity;
 }
 
 public boolean isEmpty() {
  return size == 0;
 }
 
 public T seekMax() {
  return data[1];
 }
 
 public void swap(int i, int j) {
  if (i != j) {
   T temp = data[i];
   data[i] = data[j];
   data[j] = temp;
  }
 }
 
 public void insert(T item) {
  size++;
  data[size] = item;
  shiftUp(size);
 }
 
 public T popMax() {
  swap(1, size--);
  shiftDown(1);
  return data[size + 1];
 }
 
 public void shiftUp(int child) {
  while (child > 1 && data[child].compareTo(data[child / 2]) > 0) {
   swap(child, child / 2);
   child /= 2;
  }
 }
 
 /**
  * @param a data数组中某个元素的下角标
  * @param b data数组中某个元素的下角标
  * @return 哪个元素大就返回哪个的下角标
  */
 private int max(int a, int b) {
  if (data[a].compareTo(data[b]) < 0) {//如果data[b]大
   return b;//返回b
  } else {//如果data[a]大
   return a;//返回a
  }
 }
 
 /**
  * @param a data数组中某个元素的下角标
  * @param b data数组中某个元素的下角标
  * @param c data数组中某个元素的下角标
  * @return 哪个元素大就返回哪个的下角标
  */
 private int max(int a, int b, int c) {
  int biggest = max(a, b);
  biggest = max(biggest, c);
  return biggest;
 }
 
 public void shiftDown(int father) {
  while (true) {
   int lchild = father * 2;
   int rchild = father * 2 + 1;
   int newFather = father;//这里赋不赋值无所谓,如果把下面这个return改成break,那就必须赋值了
 
   if (lchild > size) {//如果没有左、右孩子
    return;
   } else if (rchild > size) {//如果没有右孩子
    newFather = max(father, lchild);
   } else {//如果有左、右孩子
    newFather = max(father, lchild, rchild);
   }
 
   if (newFather == father) {//如果原父结点就是三者最大,则不用继续整理堆了
    return;
   } else {//父节点不是最大,则把大的孩子交换上来,然后继续往下堆调整,直到满足大根堆为止
    swap(newFather, father);
    father = newFather;//相当于继续shiftDown(newFather)。假如newFather原来是father的左孩子,那就相当于shiftDown(2*father)
   }
  }
 }
 
 public static > void sort(T[] arr) {
  int len = arr.length;
  MaxHeap maxHeap = new MaxHeap<>(arr);
  for (int i = len - 1; i >= 0; i--) {
   arr[i] = maxHeap.popMax();
  }
 }
 
 public static void printArr(Object[] arr) {
  for (Object o : arr) {
   System.out.print(o);
   System.out.print("\t");
  }
  System.out.println();
 }
 
 public static void main(String args[]) {
  Integer[] arr = {3, 5, 1, 7, 2, 9, 8, 0, 4, 6};
  printArr(arr);//3 5 1 7 2 9 8 0 4 6
  sort(arr);
  printArr(arr);//0 1 2 3 4 5 6 7 8 9
 }
}

以上是“Java数组实现堆排序的示例分析”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!


本文名称:Java数组实现堆排序的示例分析
URL网址:http://wjwzjz.com/article/gosipc.html
在线咨询
服务热线
服务热线:028-86922220
TOP