新网创想网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

基于linuxthreads2.0.1线程源码如何分析线程库的初始化和线程的管理

今天就跟大家聊聊有关基于linuxthreads2.0.1线程源码如何分析线程库的初始化和线程的管理,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

为竹溪等地区用户提供了全套网页设计制作服务,及竹溪网站建设行业解决方案。主营业务为成都网站建设、网站建设、竹溪网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!

初步分析一下线程的初始化和管理。

线程库的初始化代码如下。

   
     
 
    
   


// 在main函数之前执行该函数
void __pthread_initialize(void) __attribute__((constructor));

void __pthread_initialize(void)
{
 struct sigaction sa;
 sigset_t mask;

 /* We may be called by others.  This may happen if the constructors
    are not called in the order we need.  */
 if (__pthread_initial_thread_bos != NULL)
   return;

 /* For the initial stack, reserve at least STACK_SIZE bytes of stack
    below the current stack address, and align that on a
    STACK_SIZE boundary. */
 __pthread_initial_thread_bos =
   // 按STACK_SIZE大小对齐
   (char *)(((long)CURRENT_STACK_FRAME - 2 * STACK_SIZE) & ~(STACK_SIZE - 1));
 /* Update the descriptor for the initial thread. */
 // 即main函数代表的主进程id
 __pthread_initial_thread.p_pid = getpid();
 /* If we have special thread_self processing, initialize that for the
    main thread now.  */
#ifdef INIT_THREAD_SELF
 INIT_THREAD_SELF(&__pthread_initial_thread);
#endif
 /* Setup signal handlers for the initial thread.
    Since signal handlers are shared between threads, these settings
    will be inherited by all other threads. */
 // 为两个信号注册处理函数
 sa.sa_handler = __pthread_sighandler;
 sigemptyset(&sa.sa_mask);
 sa.sa_flags = SA_RESTART; /* does not matter for regular threads, but
                              better for the thread manager */
 sigaction(PTHREAD_SIG_RESTART, &sa, NULL);
 sa.sa_handler = pthread_handle_sigcancel;
 sa.sa_flags = 0;
 sigaction(PTHREAD_SIG_CANCEL, &sa, NULL);

 /* Initially, block PTHREAD_SIG_RESTART. Will be unblocked on demand. */
 // 屏蔽restart信号
 sigemptyset(&mask);
 sigaddset(&mask, PTHREAD_SIG_RESTART);
 sigprocmask(SIG_BLOCK, &mask, NULL);
 /* Register an exit function to kill all other threads. */
 /* Do it early so that user-registered atexit functions are called
    before pthread_exit_process. */
 // 注册退出时执行的函数
 __on_exit(pthread_exit_process, NULL);
}              

在执行main函数之前会先执行__pthread_initialize函数,该函数做的事情主要有

1 在栈上分配一块内存。

2 保存当前进程,进main函数对应的进程的pid。

3 注册两个信号处理函数。

4 注册退出时执行的函数

接下来我们会调用pthread_create进行线程的创建。我们来看看该函数做了什么。

   
     
 
    
   

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
                  void * (*start_routine)(void *), void *arg)
{
 pthread_t self = thread_self();
 struct pthread_request request;
 // 还没执行过pthread_initialize_manager则执行,用于初始化manager线程
 if (__pthread_manager_request < 0) {
   if (pthread_initialize_manager() < 0) return EAGAIN;
 }
 // 给manager发一下请求
 request.req_thread = self;
 request.req_kind = REQ_CREATE;
 request.req_args.create.attr = attr;
 request.req_args.create.fn = start_routine;
 request.req_args.create.arg = arg;
 // 获取当前线程的信号掩码
 sigprocmask(SIG_SETMASK, (const sigset_t *) NULL,
             &request.req_args.create.mask);
 // 通过管道写入,通知manager线程,新建一个线程
 __libc_write(__pthread_manager_request, (char *) &request, sizeof(request));
 // 挂起,等待manager唤醒
 suspend(self);
 // 等于0说明创建成功,否则返回失败的错误码,p_retval在pthread_handle_create中设置
 if (self->p_retcode == 0) *thread = (pthread_t) self->p_retval;
 return self->p_retcode;
}              

我们发现,该函数没有做实际的事情,他通过往管道写了一些数据。这时候就要先看pthread_initialize_manager函数了。

   
     
 
    
   

static int pthread_initialize_manager(void)
{
 int manager_pipe[2];

 /* Setup stack for thread manager */
 // 在堆上分配一块内存用于manager线程的栈
 __pthread_manager_thread_bos = malloc(THREAD_MANAGER_STACK_SIZE);
 if (__pthread_manager_thread_bos == NULL) return -1;
 // limit
 __pthread_manager_thread_tos =
   __pthread_manager_thread_bos + THREAD_MANAGER_STACK_SIZE;
 /* Setup pipe to communicate with thread manager */
 if (pipe(manager_pipe) == -1) {
   free(__pthread_manager_thread_bos);
   return -1;
 }
 __pthread_manager_request = manager_pipe[1]; /* writing end */
 __pthread_manager_reader = manager_pipe[0]; /* reading end */
 /* Start the thread manager */
 // 新建一个manager线程,manager_pipe是__thread_manager函数的入参
 if (__clone(__pthread_manager,
 __pthread_manager_thread_tos,
 CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND,
 (void *)(long)manager_pipe[0]) == -1) {
   free(__pthread_manager_thread_bos);
   __libc_close(manager_pipe[0]);
   __libc_close(manager_pipe[1]);
   __pthread_manager_request = -1;
   return -1;
 }
 return 0;
}              

该函数做了几件事情

1 在堆上申请一块内存用作manager线程的栈

2 创建了一个管道,用于manager线程和其他线程通信。

3 然后新建了一个进程,然后执行__pthread_manager函数。(具体可参考http://www.man7.org/linux/man-pages/man2/clone.2.html)

manager线程是linuxthreads线程库比较重要的存在,他是管理其他线程的线程。我们接着看_pthread_manager函数的代码。

   
     
 
    
   

/* The server thread managing requests for thread creation and termination */

int __pthread_manager(void *arg)
{
 // 管道的读端
 int reqfd = (long)arg;
 sigset_t mask;
 fd_set readfds;
 struct timeval timeout;
 int n;
 struct pthread_request request;

 /* If we have special thread_self processing, initialize it.  */
#ifdef INIT_THREAD_SELF
 INIT_THREAD_SELF(&__pthread_manager_thread);
#endif
 /* Block all signals except PTHREAD_SIG_RESTART */
 // 初始化为全1
 sigfillset(&mask);
 // 设置某一位为0,这里设置可以处理restart信号
 sigdelset(&mask, PTHREAD_SIG_RESTART);
 // 设置进程的信号掩码
 sigprocmask(SIG_SETMASK, &mask, NULL);
 /* Enter server loop */
 while(1) {
   // 清0
   FD_ZERO(&readfds);
   // 置某位为1,位数由reqfd算得,这里是管道读端的文件描述符
   FD_SET(reqfd, &readfds);
   // 阻塞的超时时间
   timeout.tv_sec = 2;
   timeout.tv_usec = 0;
   // 定时阻塞等待管道有数据可读
   n = __select(FD_SETSIZE, &readfds, NULL, NULL, &timeout);
   /* Check for termination of the main thread */
   // 父进程id为1说明主进程(线程)已经退出,子进程被init(pid=1)进程接管了,
   if (getppid() == 1) {
     // 0说明不需要给主线程发,因为他已经退出了
     pthread_kill_all_threads(SIGKILL, 0);
     return 0;
   }
   /* Check for dead children */
   if (terminated_children) {
     terminated_children = 0;
     pthread_reap_children();
   }
   /* Read and execute request */
   // 管道有数据可读
   if (n == 1 && FD_ISSET(reqfd, &readfds)) {
     // 读出来放到request
     n = __libc_read(reqfd, (char *)&request, sizeof(request));
     ASSERT(n == sizeof(request));
     switch(request.req_kind) {
     // 创建线程
     case REQ_CREATE:
       request.req_thread->p_retcode =
         pthread_handle_create((pthread_t *) &request.req_thread->p_retval,
                               request.req_args.create.attr,
                               request.req_args.create.fn,
                               request.req_args.create.arg,
                               request.req_args.create.mask,
                               request.req_thread->p_pid);
       // 唤醒父线程
       restart(request.req_thread);
       break;
     case REQ_FREE:
       pthread_handle_free(request.req_args.free.thread);
       break;
     case REQ_PROCESS_EXIT:
       pthread_handle_exit(request.req_thread,
                           request.req_args.exit.code);
       break;
     case REQ_MAIN_THREAD_EXIT:
       // 标记主线程退出
       main_thread_exiting = 1;
       // 其他线程已经退出了,只有主线程了,唤醒主线程,主线程也退出,见pthread_exit,如果还有子线程没退出则主线程不能退出
       if (__pthread_main_thread->p_nextlive == __pthread_main_thread) {
         restart(__pthread_main_thread);
         return 0;
       }
       break;
     }
   }
 }
}              

该函数是manager线程的主要代码。他类似一个服务器一起。接收其他线程发过来的信息,然后处理。在switch那里可以看到具体的处理。这里我们只看线程创建的逻辑。函数是pthread_handle_create。

   
     
 
    
   

// pthread_create发送信号给manager,manager调该函数创建线程
static int pthread_handle_create(pthread_t *thread, const pthread_attr_t *attr,
                                void * (*start_routine)(void *), void *arg,
                                sigset_t mask, int father_pid)
{
 int sseg;
 int pid;
 pthread_t new_thread;
 int i;

 /* Find a free stack segment for the current stack */
 sseg = 0;
 while (1) {
   while (1) {
     if (sseg >= num_stack_segments) {
       if (pthread_grow_stack_segments() == -1) return EAGAIN;
     }
     if (stack_segments[sseg] == 0) break;
     sseg++;
   }
   // 标记已使用
   stack_segments[sseg] = 1;
   // 存储线程元数据的地方
   new_thread = THREAD_SEG(sseg);
   /* Allocate space for stack and thread descriptor. */
   // 给线程分配栈
   if (mmap((caddr_t)((char *)(new_thread+1) - INITIAL_STACK_SIZE),
INITIAL_STACK_SIZE, PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED | MAP_GROWSDOWN, -1, 0)
       != (caddr_t) -1) break;
   /* It seems part of this segment is already mapped. Leave it marked
      as reserved (to speed up future scans) and try the next. */
   sseg++;
 }
 /* Initialize the thread descriptor */
 new_thread->p_nextwaiting = NULL;
 new_thread->p_spinlock = 0;
 new_thread->p_signal = 0;
 new_thread->p_signal_jmp = NULL;
 new_thread->p_cancel_jmp = NULL;
 new_thread->p_terminated = 0;
 new_thread->p_detached = attr == NULL ? 0 : attr->detachstate;
 new_thread->p_exited = 0;
 new_thread->p_retval = NULL;
 new_thread->p_joining = NULL;
 new_thread->p_cleanup = NULL;
 new_thread->p_cancelstate = PTHREAD_CANCEL_ENABLE;
 new_thread->p_canceltype = PTHREAD_CANCEL_DEFERRED;
 new_thread->p_canceled = 0;
 new_thread->p_errno = 0;
 new_thread->p_h_errno = 0;
 new_thread->p_initial_fn = start_routine;
 new_thread->p_initial_fn_arg = arg;
 new_thread->p_initial_mask = mask;
 for (i = 0; i < PTHREAD_KEYS_MAX; i++) new_thread->p_specific[i] = NULL;
 /* Do the cloning */
 pid = __clone(pthread_start_thread, new_thread,
(CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND
| PTHREAD_SIG_RESTART),
new_thread);
 /* Check if cloning succeeded */
 if (pid == -1) {
   /* Free the stack */
   munmap((caddr_t)((char *)(new_thread+1) - INITIAL_STACK_SIZE),
  INITIAL_STACK_SIZE);
   stack_segments[sseg] = 0;
   return EAGAIN;
 }
 /* Set the priority and policy for the new thread, if available. */
 if (attr != NULL && attr->schedpolicy != SCHED_OTHER) {
   switch(attr->inheritsched) {
   case PTHREAD_EXPLICIT_SCHED:
     sched_setscheduler(pid, attr->schedpolicy, &attr->schedparam);
     break;
   case PTHREAD_INHERIT_SCHED:
     { struct sched_param father_param;
       int father_policy;
       father_policy = sched_getscheduler(father_pid);
       sched_getparam(father_pid, &father_param);
       sched_setscheduler(pid, father_policy, &father_param);
     }
     break;
   }
 }
 /* Insert new thread in doubly linked list of active threads */
 // 头插法,插入主线程和其他线程之间,
 new_thread->p_prevlive = __pthread_main_thread;
 new_thread->p_nextlive = __pthread_main_thread->p_nextlive;
 __pthread_main_thread->p_nextlive->p_prevlive = new_thread;
 __pthread_main_thread->p_nextlive = new_thread;
 /* Set pid field of the new thread, in case we get there before the
    child starts. */
 new_thread->p_pid = pid;
 /* We're all set */
 *thread = new_thread;
 return 0;
}

             

该函数分配一个tcb结构体表示新的线程。然后分配一个线程栈,调用clone新建一个进程。最后链接到线程链表中。最后执行pthread_start_thread函数。该函数代码如下。

   
     
 
    
   

// 传给clone函数的参数
static int pthread_start_thread(void *arg)
{
 // 新建的线程
 pthread_t self = (pthread_t) arg;
 void * outcome;
 /* Initialize special thread_self processing, if any.  */
#ifdef INIT_THREAD_SELF
 INIT_THREAD_SELF(self);
#endif
 /* Make sure our pid field is initialized, just in case we get there
    before our father has initialized it. */
 // 记录线程对应进程的id
 self->p_pid = getpid();
 /* Initial signal mask is that of the creating thread. (Otherwise,
    we'd just inherit the mask of the thread manager.) */
 // 设置线程的信号掩码,值继承于父线程
 sigprocmask(SIG_SETMASK, &self->p_initial_mask, NULL);
 /* Run the thread code */
 // 开始执行线程的主函数
 outcome = self->p_initial_fn(self->p_initial_fn_arg);
 /* Exit with the given return value */
 // 执行完退出
 pthread_exit(outcome);
 return 0;
}              

没有太多逻辑,执行用户传进来的函数。执行完后退出。

看完上述内容,你们对基于linuxthreads2.0.1线程源码如何分析线程库的初始化和线程的管理有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注创新互联行业资讯频道,感谢大家的支持。


分享名称:基于linuxthreads2.0.1线程源码如何分析线程库的初始化和线程的管理
本文网址:http://wjwzjz.com/article/gjhidh.html
在线咨询
服务热线
服务热线:028-86922220
TOP