新网创想网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

Python大数据一定要用NumpyArray的原因是什么

这篇文章主要讲解了“Python大数据一定要用Numpy Array的原因是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Python大数据一定要用Numpy Array的原因是什么”吧!

专注于为中小企业提供成都网站设计、网站建设服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业北京免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了近千家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。

1.内存占用更小

适当地使用Numpy数组替代List,你能让你的内存占用降低20倍。

对于Python原生的List列表,由于每次新增对象,都需要8个字节来引用新对象,新的对象本身占28个字节(以整数为例)。所以列表 list 的大小可以用以下公式计算:

64 + 8 * len(lst) + len(lst) * 28 字节

Python大数据一定要用Numpy Array的原因是什么

而使用Numpy,就能减少非常多的空间占用。比如长度为n的Numpy整形Array,它需要:

96 + len(a) * 8 字节

Python大数据一定要用Numpy Array的原因是什么

可见,数组越大,你节省的内存空间越多。假设你的数组有10亿个元素,那么这个内存占用大小的差距会是GB级别的。

2.速度更快、内置计算方法

运行下面这个脚本,同样是生成某个维度的两个数组并相加,你就能看到原生List和Numpy Array的性能差距。

import time
import numpy as np
size_of_vec = 1000
def pure_python_version():
t1 = time.time()
X = range(size_of_vec)
Y = range(size_of_vec)
Z = [X[i] + Y[i] for i in range(len(X)) ]
return time.time() - t1
def numpy_version():
t1 = time.time()
X = np.arange(size_of_vec)
Y = np.arange(size_of_vec)
Z = X + Y
return time.time() - t1
t1 = pure_python_version()
t2 = numpy_version()
print(t1, t2)
print("Numpy is in this example " + str(t1/t2) + " faster!")

结果如下:

0.00048732757568359375 0.0002491474151611328
Numpy is in this example 1.955980861244019 faster!

可以看到,Numpy比原生数组快1.95倍。

如果你细心的话,还能发现,Numpy array可以直接执行加法操作。而原生的数组是做不到这点的,这就是Numpy 运算方法的优势。

我们再做几次重复试验,以证明这个性能优势是持久性的。

import numpy as np
from timeit import Timer
size_of_vec = 1000
X_list = range(size_of_vec)
Y_list = range(size_of_vec)
X = np.arange(size_of_vec)
Y = np.arange(size_of_vec)
def pure_python_version():
Z = [X_list[i] + Y_list[i] for i in range(len(X_list)) ]
def numpy_version():
Z = X + Y
timer_obj1 = Timer("pure_python_version()",
 "from __main__ import pure_python_version")
timer_obj2 = Timer("numpy_version()",
 "from __main__ import numpy_version")
print(timer_obj1.timeit(10))
print(timer_obj2.timeit(10)) # Runs Faster!
print(timer_obj1.repeat(repeat=3, number=10))
print(timer_obj2.repeat(repeat=3, number=10)) # repeat to prove it!

结果如下:

0.0029753120616078377
0.00014940369874238968
[0.002683573868125677, 0.002754641231149435, 0.002803879790008068]
[6.536301225423813e-05, 2.9387418180704117e-05, 2.9171351343393326e-05]

可以看到,第二个输出的时间总是小得多,这就证明了这个性能优势是具有持久性的。

所以,如果你在做一些大数据研究,比如金融数据、股票数据的研究,使用Numpy能够节省你不少内存空间,并拥有更强大的性能。

感谢各位的阅读,以上就是“Python大数据一定要用Numpy Array的原因是什么”的内容了,经过本文的学习后,相信大家对Python大数据一定要用Numpy Array的原因是什么这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!


网页名称:Python大数据一定要用NumpyArray的原因是什么
浏览地址:http://wjwzjz.com/article/gjdois.html
在线咨询
服务热线
服务热线:028-86922220
TOP