新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章主要讲解了“Python怎么绘制全球风场”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Python怎么绘制全球风场”吧!
从策划到设计制作,每一步都追求做到细腻,制作可持续发展的企业网站。为客户提供成都网站建设、网站建设、网站策划、网页设计、域名与空间、虚拟主机、网络营销、VI设计、 网站改版、漏洞修补等服务。为客户提供更好的一站式互联网解决方案,以客户的口碑塑造优易品牌,携手广大客户,共同发展进步。
1.MERRA-2 windspeed calculated from 2-meter northward and eastward wind component variables:
from netCDF4 import Datasetimport numpy as npimport matplotlib.pyplot as pltimport cartopy.crs as ccrsfrom cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTERimport matplotlib.ticker as mticker# Open the NetCDF4 file (add a directory path if necessary) for reading:data = Dataset('F:/Rpython/lp28/data/MERRA2_300.tavg1_2d_slv_Nx.20100601.nc4', mode='r')# Run the following cell to see the MERRA2 metadata. This line will print attribute and variable information. From the 'variables(dimensions)' list, choose which variable(s) to read in below:print(data)# Read in variables:# longitude and latitudelons = data.variables['lon']lats = data.variables['lat']lon, lat = np.meshgrid(lons, lats)# 2-meter eastward wind m/sU2M = data.variables['U2M']# 2-meter northward wind m/sV2M = data.variables['V2M']# Replace _FillValues with NaNs:U2M_nans = U2M[:]V2M_nans = V2M[:]_FillValueU2M = U2M._FillValue_FillValueV2M = V2M._FillValueU2M_nans[U2M_nans == _FillValueU2M] = np.nanV2M_nans[V2M_nans == _FillValueV2M] = np.nan# Calculate wind speed:ws = np.sqrt(U2M_nans**2+V2M_nans**2)# Calculate wind direction in radians:ws_direction = np.arctan2(V2M_nans,U2M_nans)# NOTE: the MERRA-2 file contains hourly data for 24 hours (t=24). To get the daily mean wind speed, take the average of the hourly wind speeds:ws_daily_avg = np.nanmean(ws, axis=0)# NOTE: To calculate the average wind direction correctly it is important to use the 'vector average' as atan2(,) where and are the daily average component vectors, rather than as mean of the individual wind vector direction angle. This avoids a situation where averaging 1 and 359 = 180 rather than the desired 0.U2M_daily_avg = np.nanmean(U2M_nans, axis=0)V2M_daily_avg = np.nanmean(V2M_nans, axis=0)ws_daily_avg_direction = np.arctan2(V2M_daily_avg, U2M_daily_avg)#Plot Global MERRA-2 Wind Speed# Set the figure size, projection, and extentfig = plt.figure(figsize=(8,4))ax = plt.axes(projection=ccrs.Robinson())ax.set_global()ax.coastlines(resolution="110m",linewidth=1)ax.gridlines(linestyle='--',color='black')# Plot windspeed: set contour levels, then draw the filled contours and a colorbarclevs = np.arange(0,19,1)plt.contourf(lon, lat, ws_daily_avg, clevs, transform=ccrs.PlateCarree(),cmap=plt.cm.jet)plt.title('MERRA-2 Daily Average 2-meter Wind Speed, 1 June 2010', size=14)cb = plt.colorbar(ax=ax, orientation="vertical", pad=0.02, aspect=16, shrink=0.8)cb.set_label('m/s',size=12,rotation=0,labelpad=15)cb.ax.tick_params(labelsize=10)plt.savefig('F:/Rpython/lp28/plot29.png',dpi=1200)plt.show()
2.MERRA-2 windspeed and direction calculated from 2-meter northward and eastward wind component variables:
# The filled contours show the wind speed. The "quiver" function is used to overlay arrows to show the wind direction. The length of the arrows is determined by the wind speed.# Set the figure size, projection, and extentfig = plt.figure(figsize=(9,5))ax = plt.axes(projection=ccrs.PlateCarree())ax.set_extent([-62,-38,35,54])ax.coastlines(resolution="50m",linewidth=1)# Add gridlinesgl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True,linewidth=1, color='black', linestyle='--')gl.xlabels_top = Falsegl.ylabels_right = Falsegl.xlines = Truegl.xlocator = mticker.FixedLocator([-65,-60,-50,-40,-30])gl.ylocator = mticker.FixedLocator([30,40,50,60])gl.xformatter = LONGITUDE_FORMATTERgl.yformatter = LATITUDE_FORMATTERgl.xlabel_style = {'size':10, 'color':'black'}gl.ylabel_style = {'size':10, 'color':'black'}# Plot windspeedclevs = np.arange(0,14.5,1)plt.contourf(lon, lat, ws[0,:,:], clevs, transform=ccrs.PlateCarree(),cmap=plt.cm.jet)plt.title('MERRA-2 2m Wind Speed and Direction, 00Z 1 June 2010', size=16)cb = plt.colorbar(ax=ax, orientation="vertical", pad=0.02, aspect=16, shrink=0.8)cb.set_label('m/s',size=14,rotation=0,labelpad=15)cb.ax.tick_params(labelsize=10)# Overlay wind vectorsqv = plt.quiver(lon, lat, U2M_nans[0,:,:], V2M_nans[0,:,:], scale=420, color='k')plt.savefig('F:/Rpython/lp28/plot29.1.png',dpi=1200)plt.show()
感谢各位的阅读,以上就是“Python怎么绘制全球风场”的内容了,经过本文的学习后,相信大家对Python怎么绘制全球风场这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!