新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章主要介绍了C++怎么实现由中序和后序遍历二叉树的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇C++怎么实现由中序和后序遍历二叉树文章都会有所收获,下面我们一起来看看吧。
创新互联专业提供成都主机托管四川主机托管成都服务器托管四川服务器托管,支持按月付款!我们的承诺:贵族品质、平民价格,机房位于中国电信/网通/移动机房,棕树数据中心服务有保障!
Given inorder and postorder traversal of a tree, construct the binary tree.
Note:
You may assume that duplicates do not exist in the tree.
For example, given
inorder = [9,3,15,20,7]
postorder = [9,15,7,20,3]
Return the following binary tree:
3
/
9 20
/
15 7
这道题要求从中序和后序遍历的结果来重建原二叉树,我们知道中序的遍历顺序是左-根-右,后序的顺序是左-右-根,对于这种树的重建一般都是采用递归来做,可参见博主之前的一篇博客 Convert Sorted Array to Binary Search Tree。针对这道题,由于后序的顺序的最后一个肯定是根,所以原二叉树的根结点可以知道,题目中给了一个很关键的条件就是树中没有相同元素,有了这个条件就可以在中序遍历中也定位出根节点的位置,并以根节点的位置将中序遍历拆分为左右两个部分,分别对其递归调用原函数。代码如下:
class Solution { public: TreeNode *buildTree(vector&inorder, vector &postorder) { return buildTree(inorder, 0, inorder.size() - 1, postorder, 0, postorder.size() - 1); } TreeNode *buildTree(vector &inorder, int iLeft, int iRight, vector &postorder, int pLeft, int pRight) { if (iLeft > iRight || pLeft > pRight) return NULL; TreeNode *cur = new TreeNode(postorder[pRight]); int i = 0; for (i = iLeft; i < inorder.size(); ++i) { if (inorder[i] == cur->val) break; } cur->left = buildTree(inorder, iLeft, i - 1, postorder, pLeft, pLeft + i - iLeft - 1); cur->right = buildTree(inorder, i + 1, iRight, postorder, pLeft + i - iLeft, pRight - 1); return cur; } };
上述代码中需要小心的地方就是递归是 postorder 的左右 index 很容易写错,比如 pLeft + i - iLeft - 1, 这个又长又不好记,首先我们要记住 i - iLeft 是计算 inorder 中根节点位置和左边起始点的距离,然后再加上 postorder 左边起始点然后再减1。我们可以这样分析,如果根结点就是左边起始点的话,那么拆分的话左边序列应该为空集,此时 i - iLeft 为0, pLeft + 0 - 1 < pLeft, 那么再递归调用时就会返回 NULL, 成立。如果根节点是左边起始点紧跟的一个,那么 i - iLeft 为1, pLeft + 1 - 1 = pLeft,再递归调用时还会生成一个节点,就是 pLeft 位置上的节点,为原二叉树的一个叶节点。
下面来看一个例子, 某一二叉树的中序和后序遍历分别为:
Inorder: 11 4 5 13 8 9
Postorder: 11 4 13 9 8 5
11 4 5 13 8 9 => 5
11 4 13 9 8 5 /
11 4 13 8 9 => 5
11 4 13 9 8 /
4 8
11 13 9 => 5
11 13 9 /
4 8
/ /
11 13 9
关于“C++怎么实现由中序和后序遍历二叉树”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“C++怎么实现由中序和后序遍历二叉树”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注创新互联行业资讯频道。