新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
代码如下:
创新互联长期为数千家客户提供的网站建设服务,团队从业经验10年,关注不同地域、不同群体,并针对不同对象提供差异化的产品和服务;打造开放共赢平台,与合作伙伴共同营造健康的互联网生态环境。为周至企业提供专业的网站制作、成都做网站,周至网站改版等技术服务。拥有十多年丰富建站经验和众多成功案例,为您定制开发。
text = "Hello Python,Hello 2021."
letter = 0
digital = 0
other = 0
for i in text:
if i.isalpha():
letter += 1
elif i.isdigit():
digital += 1
else:
other += 1
print('字母:{} 数字:{} 其他:{}'.format(letter,digital,other))
输出:
字母:16 数字:4 其他:4
下面是Python内置关于判断字符串类型的方法介绍:
str.isalnum()
如果字符串中的所有字符都是字母或数字且至少有一个字符,则返回 True , 否则返回 False 。 如果 c.isalpha() , c.isdecimal() , c.isdigit() ,或 c.isnumeric() 之中有一个返回 True ,则字符``c``是字母或数字。
str.isalpha()
如果字符串中的所有字符都是字母,并且至少有一个字符,返回 True ,否则返回 False 。字母字符是指那些在 Unicode 字符数据库中定义为 "Letter" 的字符,即那些具有 "Lm"、"Lt"、"Lu"、"Ll" 或 "Lo" 之一的通用类别属性的字符。 注意,这与 Unicode 标准中定义的"字母"属性不同。
str.isascii()
如果字符串为空或字符串中的所有字符都是 ASCII ,返回 True ,否则返回 False 。ASCII 字符的码点范围是 U+0000-U+007F 。
3.7 新版功能.
str.isdecimal()
如果字符串中的所有字符都是十进制字符且该字符串至少有一个字符,则返回 True , 否则返回 False 。十进制字符指那些可以用来组成10进制数字的字符,例如 U+0660 ,即阿拉伯字母数字0 。 严格地讲,十进制字符是 Unicode 通用类别 "Nd" 中的一个字符。
str.isdigit()
如果字符串中的所有字符都是数字,并且至少有一个字符,返回 True ,否则返回 False 。 数字包括十进制字符和需要特殊处理的数字,如兼容性上标数字。这包括了不能用来组成 10 进制数的数字,如 Kharosthi 数。 严格地讲,数字是指属性值为 Numeric_Type=Digit 或 Numeric_Type=Decimal 的字符。
str.isidentifier()
如果字符串是有效的标识符,返回 True ,依据语言定义, 标识符和关键字 节。
调用 keyword.iskeyword() 来检测字符串 s 是否为保留标识符,例如 def 和 class。
关于零基础怎么样能快速学好Python的问题,百度提问和解答的都很多,你可以百度下看看。我觉得从个人自学的角度出发,应从以下几个方面来理解:
1 为什么选择学python?
据统计零基础或非专业的人士学python的比较多,据HackerRank开发者调查报告2018年5月显示(见图),Python排名第一,成为最受欢迎编程语言。Python以优雅、简洁著称,入行门槛低,可以从事Linux运维、Python Web网站工程师、Python自动化测试、数据分析、人工智能等职位,薪资待遇呈上涨趋势。
2 入门python需要那些准备?
2.1 心态准备。编程是一门技术,也可说是一门手艺。如同书法、绘画、乐器、雕刻等,技艺纯熟的背后肯定付出了长时间的反复练习。不要相信几周速成,也不能急于求成。编程的世界浩瀚无边,所以请保持一颗敬畏的心态去学习,认真对待写下的每一行代码,甚至每一个字符。收拾好自己的心态,向着编程的世界出发。第一步至关重要,关系到初学者从入门到精通还是从入门到放弃。选一条合适的入门道路,并坚持走下去。
2.2 配置 Python 学习环境。选Python2 还是 Python3?入门时很多人都会纠结。二者只是程序不兼容,思想上并无大差别,语法变动也并不多。选择任何一个入手,都没有大影响。如果你仍然无法抉择,那请选择 Python3,毕竟这是未来的趋势。
编辑器该如何选?同样,推荐 pycharm 社区版,配置简单、功能强大、使用起来省时省心,对初学者友好,并且完全免费!其他编辑器如:notepad++、sublimeText 3、vim 和 Emacs等不推荐了。
操作环境?Python 支持现有所有主流操作平台,不管是 windows 还是 mac 还是 linux,都能很好的运行 Python。并且后两者都默认自带 Python 环境。
2.3 选择自学的书籍。我推荐的书的内容由浅入深,建议按照先后顺序阅读学习:
2.3.1《Python简明教程》。这是一本言简意赅的 Python 入门教程,简单直白,没有废话。就算没有基础,你也可以像读小说一样,花两天时间就可以读完。适合入门快速了解语法。
2.3.2 廖雪峰编写的《Python教程》。廖先生的教程涵盖了 Python 知识的方方面面,内容更加系统,有一定深度,有一定基础之后学习会有更多的收获。
2.4 学会安装包。Python中有很多扩展包,想要安装这些包可以采用两种方法:
2.4.1 使用pip或easy_install。
1)在网上找到的需要的包,下载下来。eg. rsa-3.1.4.tar.gz;
2)解压缩该文件;
3)命令行工具cd切换到所要安装的包的目录,找到setup.py文件,然后输入python setup.py install
2.4.2 不用pip或easy_install,直接打开cmd,敲pip install rsa。
3 提升阶段需要恒心和耐力。
完成入门阶段的基础学习之后,常会陷入一个瓶颈期,通过看教程很难进一步提高编程水平。这时候,需要的是反复练习,大量的练习。可以从书上的例题、作业题开始写,再写小程序片段,然后写完整的项目。我们收集了一些练习题和网站。可根据自己阶段,选择适合的练习去做。建议最好挑选一两个系列重点完成,而不是浅尝辄止。
3.1 多做练习。推荐网站练习:
crossin编程教室实例:相对于编程教室基础练习着重于单一知识点,
编程实例训练对基础知识的融会贯通;
hackerrank:Python 部分难度循序渐进,符合学习曲线
实验楼:提升编程水平从做项目开始;
codewar:社区型编程练习网站,内容由易到难;
leetcode:为编程面试准备,对初学者稍难;
牛客网:提供 BAT 等大厂笔试题目;
codecombat:提供一边游戏一边编程;
projecteuler:纯粹的编程练习网站;
菜鸟教程100例:基于 py2 的基础练习;
3.2 遇到问题多交流。
3.2.1 利用好搜索引擎。
3.2.2 求助于各大网站。推荐
stackoverflow:这是一个程序员的知识库;
v2ex:国内非常不错的编程社区,不仅仅是包含程序,也包含了程序员的生活;
segmentfault:一家以编程问答为主的网站;
CSDN、知乎、简书等
3.2.3 加入相关的QQ、微信群、百度知道。不懂的可以随时请教。
模型拟合
对于人口模型可以采用Logistic增长函数形式,它考虑了初期的指数增长以及总资源的限制。其函数形式如下。
首先载入car包以便读取数据,然后使用nls函数进行建模,其中theta1、theta2、theta3表示三个待估计参数,start设置了参数初始值,设定trace为真以显示迭代过程。nls函数默认采用Gauss-Newton方法寻找极值,迭代过程中第一列为RSS值,后面三列是各参数估计值。然后用summary返回回归结果。
library(car)
pop.mod1 - nls(population ~ theta1/(1+exp(-(theta2+theta3*year))),start=list(theta1 = 400, theta2 = -49, theta3 = 0.025), data=USPop, trace=T)
summary(pop.mod)
在上面的回归过程中我们直接指定参数初始值,另一种方法是采用搜索策略,首先确定参数取值范围,然后利用nls2包的暴力方法来得到最优参数。但这种方法相当费时。
还有一种更为简便的方法就是采用内置自启动模型(self-starting Models),此时我们只需要指定函数形式,而不需要指定参数初始值。本例的logistic函数所对应的selfstarting函数名为SSlogis
pop.mod2 - nls(population ~ SSlogis(year,phi1,phi2,phi3),data=USPop)
二、判断拟合效果
非线性回归模型建立后需要判断拟合效果,因为有时候参数最优化过程会捕捉到局部极值点而非全局极值点。最直观的方法是在原始数据点上绘制拟合曲线。
library(ggplot2)
p - ggplot(USPop,aes(year, population))
模块
1.定义
计算机在开发过程中,代码越写越多,也就越难以维护,所以为了编写可维护的代码,我们会把函数进行分组,放在不同的文件里。在python里,一个.py文件就是一个模块。
2.优点:
提高代码的可维护性。
提高代码的复用,当模块完成时就可以在其他代码中调用。
引用其他模块,包含python内置模块和其他第三方模块。
避免函数名和变量名等名称冲突。
python内建模块:
1.sys模块
2.random模块
3.os模块:
os.path:讲解
数据可视化
1.matplotlib :
是Python可视化程序库的泰斗,它的设计和在1980年代被设计的商业化程序语言MATLAB非常接近。比如pandas和Seaborn就是matplotlib的外包,它们让你能用更少的代码去调用 matplotlib的方法。
访问:
颜色:
教程:
2.Seaborn:
它是构建在matplotlib的基础上的,用简洁的代码来制作好看的图表。Seaborn跟matplotlib最大的区别就是它的默认绘图风格和色彩搭配都具有现代美感。
访问:
3.ggplot:
gplot 跟 matplotlib 的不同之处是它允许你叠加不同的图层来完成一幅图
访问:
4.Mayavi:
Mayavi2完全用Python编写,因此它不但是一个方便实用的可视化软件,而且可以方便地用Python编写扩展,嵌入到用户编写的Python程序中,或者直接使用其面向脚本的API:mlab快速绘制三维图
访问:
讲解:
5.TVTK:
TVTK库对标准的VTK库进行包装,提供了Python风格的API、支持Trait属性和numpy的多维数组。
VTK () 是一套三维的数据可视化工具,它由C++编写,包涵了近千个类帮助我们处理和显示数据
讲解:
机器学习
1.Scikit-learn
是一个简单且高效的数据挖掘和数据分析工具,易上手,可以在多个上下文中重复使用。它基于NumPy, SciPy 和 matplotlib,开源,可商用(基于 BSD 许可)。
访问:
讲解:
2.Tensorflow
最初由谷歌机器智能科研组织中的谷歌大脑团队(Google Brain Team)的研究人员和工程师开发。该系统设计的初衷是为了便于机器学习研究,能够更快更好地将科研原型转化为生产项目。
相关推荐:《Python视频教程》
Web框架
1.Tornado
访问:
2.Flask
访问:
3.Web.py
访问:
4.django
5.cherrypy
6.jinjs
GUI 图形界面
1.Tkinter
2.wxPython
3.PyGTK
4.PyQt
5.PySide
科学计算
教程
1.numpy
访问
讲解
2.sympy
sympy是一个Python的科学计算库,用一套强大的符号计算体系完成诸如多项式求值、求极限、解方程、求积分、微分方程、级数展开、矩阵运算等等计算问题
访问
讲解
解方程
3.SciPy
官网
讲解
4.pandas
官网
讲解
5.blaze
官网
密码学
1.cryptography
2.hashids
3.Paramiko
4.Passlib
5.PyCrypto
6.PyNacl
爬虫相关
requests
scrapy
pyspider
portia
html2text
BeautifulSoup
lxml
selenium
mechanize
PyQuery
creepy
gevent
一个高并发的网络性能库
图像处理
bigmoyan
Python Imaging Library(PIL)
pillow:
自然语言处理
1.nltk:
教程
2.snownlp
3.Pattern
4.TextBlob
5.Polyglot
6.jieba:
数据库驱动
mysql-python
PyMySQL
PyMongo
pymongo
MongoDB库
访问:
redis
Redis库
访问:
cxOracle
Oracle库
访问:
SQLAlchemy
SQL工具包及对象关系映射(ORM)工具
访问:
peewee,
SQL工具包及对象关系映射(ORM)工具
访问:
torndb
Tornado原装DB
访问:
Web
pycurl
URL处理工具
smtplib模块
发送电子邮件
其他库暂未分类
1.PyInstaller:
是一个十分有用的第三方库,它能够在Windows、Linux、 Mac OS X 等操作系统下将 Python 源文件打包,通过对源文件打包, Python 程序可以在没有安装 Python 的环境中运行,也可以作为一个 独立文件方便传递和管理。
2.Ipython
一种交互式计算和开发环境
讲解
命令
ls、cd 、run、edit、clear、exist