新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
所以67实际就是sps
创新互联公司坚持“要么做到,要么别承诺”的工作理念,服务领域包括:网站制作、网站建设、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的大城网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!
为什么视频编码采用YUV而不是rgb
MediaCodec概念
大家可能不太容易明白,我画了一个图
如果第二个参数设置了surface,那么在释放的时候releaseOutputBuffer的第二个参数需要设置为true
如果第二个参数设置为null.那么在释放的时候releaseOutputBuffer的第二个参数需要设置为false
因此我们可以设置编码器的初始化
2、找到可用的byeBuffer,并将bytebuffer塞数据,塞完数据,需要通知dsp去解码
android音视频开发要想不费什么功夫的话,可以选择接入第三方的SDK,比如ZEGO即构科技,开发者可以调用ZEGO的API,4行代码30分钟就可以在应用内搭建出音视频场景,应用在视频会议、语音交友、秀场直播都可以
帧,是视频的一个基本概念,表示一张画面,如上面的翻页动画书中的一页,就是一帧。一个视频就是由许许多多帧组成的。
帧率,即单位时间内帧的数量,单位为:帧/秒 或fps(frames per second)。一秒内包含多少张图片,图片越多,画面越顺滑,过渡越自然。 帧率的一般以下几个典型值:
24/25 fps:1秒 24/25 帧,一般的电影帧率。
30/60 fps:1秒 30/60 帧,游戏的帧率,30帧可以接受,60帧会感觉更加流畅逼真。
85 fps以上人眼基本无法察觉出来了,所以更高的帧率在视频里没有太大意义。
这里我们只讲常用到的两种色彩空间。
RGB的颜色模式应该是我们最熟悉的一种,在现在的电子设备中应用广泛。通过R G B三种基础色,可以混合出所有的颜色。
这里着重讲一下YUV,这种色彩空间并不是我们熟悉的。这是一种亮度与色度分离的色彩格式。
早期的电视都是黑白的,即只有亮度值,即Y。有了彩色电视以后,加入了UV两种色度,形成现在的YUV,也叫YCbCr。
Y:亮度,就是灰度值。除了表示亮度信号外,还含有较多的绿色通道量。
U:蓝色通道与亮度的差值。
V:红色通道与亮度的差值。
音频数据的承载方式最常用的是 脉冲编码调制 ,即 PCM 。
在自然界中,声音是连续不断的,是一种模拟信号,那怎样才能把声音保存下来呢?那就是把声音数字化,即转换为数字信号。
我们知道声音是一种波,有自己的振幅和频率,那么要保存声音,就要保存声音在各个时间点上的振幅。
而数字信号并不能连续保存所有时间点的振幅,事实上,并不需要保存连续的信号,就可以还原到人耳可接受的声音。
根据奈奎斯特采样定理:为了不失真地恢复模拟信号,采样频率应该不小于模拟信号频谱中最高频率的2倍。
根据以上分析,PCM的采集步骤分为以下步骤:
采样率,即采样的频率。
上面提到,采样率要大于原声波频率的2倍,人耳能听到的最高频率为20kHz,所以为了满足人耳的听觉要求,采样率至少为40kHz,通常为44.1kHz,更高的通常为48kHz。
采样位数,涉及到上面提到的振幅量化。波形振幅在模拟信号上也是连续的样本值,而在数字信号中,信号一般是不连续的,所以模拟信号量化以后,只能取一个近似的整数值,为了记录这些振幅值,采样器会采用一个固定的位数来记录这些振幅值,通常有8位、16位、32位。
位数越多,记录的值越准确,还原度越高。
最后就是编码了。由于数字信号是由0,1组成的,因此,需要将幅度值转换为一系列0和1进行存储,也就是编码,最后得到的数据就是数字信号:一串0和1组成的数据。
整个过程如下:
声道数,是指支持能不同发声(注意是不同声音)的音响的个数。 单声道:1个声道
双声道:2个声道
立体声道:默认为2个声道
立体声道(4声道):4个声道
码率,是指一个数据流中每秒钟能通过的信息量,单位bps(bit per second)
码率 = 采样率 * 采样位数 * 声道数
这里的编码和上面音频中提到的编码不是同个概念,而是指压缩编码。
我们知道,在计算机的世界中,一切都是0和1组成的,音频和视频数据也不例外。由于音视频的数据量庞大,如果按照裸流数据存储的话,那将需要耗费非常大的存储空间,也不利于传送。而音视频中,其实包含了大量0和1的重复数据,因此可以通过一定的算法来压缩这些0和1的数据。
特别在视频中,由于画面是逐渐过渡的,因此整个视频中,包含了大量画面/像素的重复,这正好提供了非常大的压缩空间。
因此,编码可以大大减小音视频数据的大小,让音视频更容易存储和传送。
视频编码格式有很多,比如H26x系列和MPEG系列的编码,这些编码格式都是为了适应时代发展而出现的。
其中,H26x(1/2/3/4/5)系列由ITU(International Telecommunication Union)国际电传视讯联盟主导
MPEG(1/2/3/4)系列由MPEG(Moving Picture Experts Group, ISO旗下的组织)主导。
当然,他们也有联合制定的编码标准,那就是现在主流的编码格式H264,当然还有下一代更先进的压缩编码标准H265。
H264是目前最主流的视频编码标准,所以我们后续的文章中主要以该编码格式为基准。
H264由ITU和MPEG共同定制,属于MPEG-4第十部分内容。
我们已经知道,视频是由一帧一帧画面构成的,但是在视频的数据中,并不是真正按照一帧一帧原始数据保存下来的(如果这样,压缩编码就没有意义了)。
H264会根据一段时间内,画面的变化情况,选取一帧画面作为完整编码,下一帧只记录与上一帧完整数据的差别,是一个动态压缩的过程。
在H264中,三种类型的帧数据分别为
I帧:帧内编码帧。就是一个完整帧。
P帧:前向预测编码帧。是一个非完整帧,通过参考前面的I帧或P帧生成。
B帧:双向预测内插编码帧。参考前后图像帧编码生成。B帧依赖其前最近的一个I帧或P帧及其后最近的一个P帧。
全称:Group of picture。指一组变化不大的视频帧。
GOP的第一帧成为关键帧:IDR
IDR都是I帧,可以防止一帧解码出错,导致后面所有帧解码出错的问题。当解码器在解码到IDR的时候,会将之前的参考帧清空,重新开始一个新的序列,这样,即便前面一帧解码出现重大错误,也不会蔓延到后面的数据中。
DTS全称:Decoding Time Stamp。标示读入内存中数据流在什么时候开始送入解码器中进行解码。也就是解码顺序的时间戳。
PTS全称:Presentation Time Stamp。用于标示解码后的视频帧什么时候被显示出来。
前面我们介绍了RGB和YUV两种图像色彩空间。H264采用的是YUV。
YUV存储方式分为两大类:planar 和 packed。
planar如下:
packed如下:
上面说过,由于人眼对色度敏感度低,所以可以通过省略一些色度信息,即亮度共用一些色度信息,进而节省存储空间。因此,planar又区分了以下几种格式:YUV444、 YUV422、YUV420。
YUV 4:4:4采样,每一个Y对应一组UV分量。
YUV 4:2:2采样,每两个Y共用一组UV分量。
YUV 4:2:0采样,每四个Y共用一组UV分量。
其中,最常用的就是YUV420。
YUV420属于planar存储方式,但是又分两种类型:
YUV420P:三平面存储。数据组成为YYYYYYYYUUVV(如I420)或YYYYYYYYVVUU(如YV12)。
YUV420SP:两平面存储。分为两种类型YYYYYYYYUVUV(如NV12)或YYYYYYYYVUVU(如NV21)
原始的PCM音频数据也是非常大的数据量,因此也需要对其进行压缩编码。
和视频编码一样,音频也有许多的编码格式,如:WAV、MP3、WMA、APE、FLAC等等,音乐发烧友应该对这些格式非常熟悉,特别是后两种无损压缩格式。
但是,我们今天的主角不是他们,而是另外一个叫AAC的压缩格式。
AAC是新一代的音频有损压缩技术,一种高压缩比的音频压缩算法。在MP4视频中的音频数据,大多数时候都是采用AAC压缩格式。
AAC格式主要分为两种:ADIF、ADTS。
ADIF:Audio Data Interchange Format。音频数据交换格式。这种格式的特征是可以确定的找到这个音频数据的开始,不需进行在音频数据流中间开始的解码,即它的解码必须在明确定义的开始处进行。这种格式常用在磁盘文件中。
ADTS:Audio Data Transport Stream。音频数据传输流。这种格式的特征是它是一个有同步字的比特流,解码可以在这个流中任何位置开始。它的特征类似于mp3数据流格式。
ADIF数据格式:
ADTS 一帧 数据格式(中间部分,左右省略号为前后数据帧):
AAC内部结构也不再赘述,可以参考AAC 文件解析及解码流程
细心的读者可能已经发现,前面我们介绍的各种音视频的编码格式,没有一种是我们平时使用到的视频格式,比如:mp4、rmvb、avi、mkv、mov...
没错,这些我们熟悉的视频格式,其实是包裹了音视频编码数据的容器,用来把以特定编码标准编码的视频流和音频流混在一起,成为一个文件。
例如:mp4支持H264、H265等视频编码和AAC、MP3等音频编码。
我们在一些播放器中会看到,有硬解码和软解码两种播放形式给我们选择,但是我们大部分时候并不能感觉出他们的区别,对于普通用户来说,只要能播放就行了。
那么他们内部究竟有什么区别呢?
在手机或者PC上,都会有CPU、GPU或者解码器等硬件。通常,我们的计算都是在CPU上进行的,也就是我们软件的执行芯片,而GPU主要负责画面的显示(是一种硬件加速)。
所谓软解码,就是指利用CPU的计算能力来解码,通常如果CPU的能力不是很强的时候,一则解码速度会比较慢,二则手机可能出现发热现象。但是,由于使用统一的算法,兼容性会很好。
硬解码,指的是利用手机上专门的解码芯片来加速解码。通常硬解码的解码速度会快很多,但是由于硬解码由各个厂家实现,质量参差不齐,非常容易出现兼容性问题。
MediaCodec 是Android 4.1(api 16)版本引入的编解码接口,是所有想在Android上开发音视频的开发人员绕不开的坑。
由于Android碎片化严重,虽然经过多年的发展,Android硬解已经有了很大改观,但实际上各个厂家实现不同, 还是会有一些意想不到的坑。
相对于FFmpeg,Android原生硬解码还是相对容易入门一些,所以接下来,我将会从MediaCodec入手,讲解如何实现视频的编解码,以及引入OpenGL实现对视频的编辑,最后才引入FFmpeg来实现软解,算是一个比较常规的音视频开发入门流程吧。
ffmpeg常用命令
封装格式 。
编码的本质就是压缩数据
音频编码的作用: 将音频采样数据( PCM 等)压缩成音频码流,从而降低音频的数据量。 常用的音频编码方式有以下几种:
H264压缩技术主要采用了以下几种方法对视频数据进行压缩。包括:
经过压缩后的帧分为:I帧,P帧和B帧:
除了I/P/B帧外,还有图像序列GOP。
组成码流的结构中,包含了以下几个部分,从大到小依次是:
H264视频序列,图像,片组,片,NALU,宏块,像素
H264功能分为两层:
1.H264视频序列包括一系列的NAL单元,每个NAL单元包含一个RBSP。
2.一个原始的H.264由 N个NALU单元组成
3.NALU单元由[StartCode][NALU Header][NALU Payload]三部分组成
5.NAL Header
由三部分组成forbidden_bit(1bit)(禁止位),nal_reference_bit(2bits)(优先级,,值越大,该NAL越重要),nal_unit_type(5bits)(类型)
nal_unit_type
6.NAL的解码单元的流程如下
Android SDK 提供了两套音频采集的API,分别是:MediaRecorder 和 AudioRecord,前者是一个更加上层一点的API,它可以直接把手机麦克风录入的音频数据进行编码压缩(如AMR、MP3等)并存成文件,而后者则更接近底层,能够更加自由灵活地控制,可以得到原始的一帧帧PCM音频数据。如果想简单地做一个录音机,录制成音频文件,则推荐使用 MediaRecorder,而如果需要对音频做进一步的算法处理、或者采用第三方的编码库进行压缩、以及网络传输等应用,则建议使用 AudioRecord,其实 MediaRecorder 底层也是调用了 AudioRecord 与 Android Framework 层的 AudioFlinger 进行交互的。直播中实时采集音频自然是要用AudioRecord了。
2.1 播放声音可以用MediaPlayer和AudioTrack,两者都提供了Java API供应用开发者使用。虽然都可以播放声音,但两者还是有很大的区别的。
2.2 其中最大的区别是MediaPlayer可以播放多种格式的声音文件,例如MP3,AAC,WAV,OGG,MIDI等。MediaPlayer会在framework层创建对应的音频解码器。而AudioTrack只能播放已经解码的PCM流,如果对比支持的文件格式的话则是AudioTrack只支持wav格式的音频文件,因为wav格式的音频文件大部分都是PCM流。AudioTrack不创建解码器,所以只能播放不需要解码的wav文件。
2.3 MediaPlayer在framework层还是会创建AudioTrack,把解码后的PCM数流传递给AudioTrack,AudioTrack再传递给AudioFlinger进行混音,然后才传递给硬件播放,所以是MediaPlayer包含了AudioTrack。
2.4 在接触Android音频播放API的时候,发现SoundPool也可以用于播放音频。下面是三者的使用场景:MediaPlayer 更加适合在后台长时间播放本地音乐文件或者在线的流式资源; SoundPool 则适合播放比较短的音频片段,比如游戏声音、按键声、铃声片段等等,它可以同时播放多个音频; 而 AudioTrack 则更接近底层,提供了非常强大的控制能力,支持低延迟播放,适合流媒体和VoIP语音电话等场景。
使用 Camera API 采集视频数据并保存到文件,分别使用 SurfaceView、TextureView 来预览 Camera 数据,取到 NV21 的数据回调。
4.1 一个音视频文件是由音频和视频组成的,我们可以通过MediaExtractor、MediaMuxer把音频或视频给单独抽取出来,抽取出来的音频和视频能单独播放;
4.2 MediaMuxer的作用是生成音频或视频文件;还可以把音频与视频混合成一个音视频文件。
文献资料
做过Android开发的人一般都知道,有两种方法能够做到这一点:SufaceView、TextureView。
Android 中Google支持的Camera Preview CallBack的YUV常用格式有两种:一种是NV21,一种是YV12,Android一般默认使用的是YCbCR_420_sp(NV21)