新网创想网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

处理数据缺失的方法-创新互联

处理数据缺失的方法是什么?这个问题可能是我们日常工作经常见到的。通过这个问题,希望你能收获更多。下面是解决这个问题的步骤内容。

10多年的田东网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。成都全网营销推广的优势是能够根据用户设备显示端的尺寸不同,自动调整田东建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联建站从事“田东网站设计”,“田东网站推广”以来,每个客户项目都认真落实执行。

数据缺失是数据科学家在处理数据时经常遇到的问题,本文作者基于不同的情境提供了相应的数据插补解决办法。没有完美的数据插补法,但总有一款更适合当下情况。

我在数据清理与探索性分析中遇到的最常见问题之一就是处理缺失数据。首先我们需要明白的是,没有任何方法能够完美解决这个问题。不同问题有不同的数据插补方法——时间序列分析,机器学习,回归模型等等,很难提供通用解决方案。在这篇文章中,我将试着总结最常用的方法,并寻找一个结构化的解决方法。
插补数据vs删除数据

在讨论数据插补方法之前,我们必须了解数据丢失的原因。
1、随机丢失(MAR,Missing at Random):随机丢失意味着数据丢失的概率与丢失的数据本身无关,而仅与部分已观测到的数据有关。
2、完全随机丢失(MCAR,Missing Completely at Random):数据丢失的概率与其假设值以及其他变量值都完全无关。
3、非随机丢失(MNAR,Missing not at Random):有两种可能的情况。缺失值取决于其假设值(例如,高收入人群通常不希望在调查中透露他们的收入);或者,缺失值取决于其他变量值(假设女性通常不想透露她们的年龄,则这里年龄变量缺失值受性别变量的影响)。

在前两种情况下可以根据其出现情况删除缺失值的数据,而在第三种情况下,删除包含缺失值的数据可能会导致模型出现偏差。因此我们需要对删除数据非常谨慎。请注意,插补数据并不一定能提供更好的结果。

处理数据缺失的方法


删除

列表删除

按列表删除(完整案例分析)会删除一行观测值,只要其包含至少一个缺失数据。你可能只需要直接删除这些观测值,分析就会很好做,尤其是当缺失数据只占总数据很小一部分的时候。然而在大多数情况下,这种删除方法并不好用。因为完全随机缺失(MCAR)的假设通常很难被满足。因此本删除方法会造成有偏差的参数与估计。

处理数据缺失的方法

成对删除

在重要变量存在的情况下,成对删除只会删除相对不重要的变量行。这样可以尽可能保证充足的数据。该方法的优势在于它能够帮助增强分析效果,但是它也有许多不足。它假设缺失数据服从完全随机丢失(MCAR)。如果你使用此方法,最终模型的不同部分就会得到不同数量的观测值,从而使得模型解释非常困难。

处理数据缺失的方法

观测行3与4将被用于计算ageNa与DV1的协方差;观测行2、3与4将被用于计算DV1与DV2的协方差。

处理数据缺失的方法

删除变量

在我看来,保留数据总是比抛弃数据更好。有时,如果超过60%的观测数据缺失,直接删除该变量也可以,但前提是该变量无关紧要。话虽如此,插补数据总是比直接丢弃变量好一些。

处理数据缺失的方法

以上就是处理数据缺失方法的简略介绍,详细使用情况还需要大家自己亲自动手使用过才能领会。如果想了解更多相关内容,欢迎关注创新互联行业资讯频道!

另外有需要云服务器可以了解下创新互联cdcxhl.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


本文题目:处理数据缺失的方法-创新互联
本文来源:http://wjwzjz.com/article/dsgshc.html
在线咨询
服务热线
服务热线:028-86922220
TOP