新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章主要介绍了如何使用PyCharm Profile分析异步爬虫效率,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
创新互联建站云计算的互联网服务提供商,拥有超过13年的服务器租用、成都多线服务器托管、云服务器、网页空间、网站系统开发经验,已先后获得国家工业和信息化部颁发的互联网数据中心业务许可证。专业提供云主机、网页空间、域名申请、VPS主机、云服务器、香港云服务器、免备案服务器等。第一个代码如下,就是一个普通的 for 循环爬虫。原文地址。
import requests import bs4 from colorama import Fore def main(): get_title_range() print("Done.") def get_html(episode_number: int) -> str: print(Fore.YELLOW + f"Getting HTML for episode {episode_number}", flush=True) url = f'https://talkpython.fm/{episode_number}' resp = requests.get(url) resp.raise_for_status() return resp.text def get_title(html: str, episode_number: int) -> str: print(Fore.CYAN + f"Getting TITLE for episode {episode_number}", flush=True) soup = bs4.BeautifulSoup(html, 'html.parser') header = soup.select_one('h2') if not header: return "MISSING" return header.text.strip() def get_title_range(): # Please keep this range pretty small to not DDoS my site. ;) for n in range(185, 200): html = get_html(n) title = get_title(html, n) print(Fore.WHITE + f"Title found: {title}", flush=True) if __name__ == '__main__': main()
这段代码跑完花了37s,然后我们用 pycharm 的 profiler 工具来具体看看哪些地方比较耗时间。
点击Profile (文件名称)
之后获取到得到一个详细的函数调用关系、耗时图:
可以看到 get_html 这个方法占了96.7%的时间。这个程序的 IO 耗时达到了97%,获取 html 的时候,这段时间内程序就在那死等着。如果我们能够让他不要在那儿傻傻地等待 IO 完成,而是开始干些其他有意义的事,就能节省大量的时间。
稍微做一个计算,试用asyncio异步抓取,能将时间降低多少?
get_html这个方法耗时36.8s,一共调用了15次,说明实际上获取一个链接的 html 的时间为36.8s / 15 = 2.4s。**要是全异步的话,获取15个链接的时间还是2.4s。**然后加上get_title这个函数的耗时0.6s,所以我们估算,改进后的程序将可以用 3s 左右的时间完成,也就是性能能够提升13倍。
再看下改进后的代码。原文地址。
import asyncio from asyncio import AbstractEventLoop import aiohttp import requests import bs4 from colorama import Fore def main(): # Create loop loop = asyncio.get_event_loop() loop.run_until_complete(get_title_range(loop)) print("Done.") async def get_html(episode_number: int) -> str: print(Fore.YELLOW + f"Getting HTML for episode {episode_number}", flush=True) # Make this async with aiohttp's ClientSession url = f'https://talkpython.fm/{episode_number}' # resp = await requests.get(url) # resp.raise_for_status() async with aiohttp.ClientSession() as session: async with session.get(url) as resp: resp.raise_for_status() html = await resp.text() return html def get_title(html: str, episode_number: int) -> str: print(Fore.CYAN + f"Getting TITLE for episode {episode_number}", flush=True) soup = bs4.BeautifulSoup(html, 'html.parser') header = soup.select_one('h2') if not header: return "MISSING" return header.text.strip() async def get_title_range(loop: AbstractEventLoop): # Please keep this range pretty small to not DDoS my site. ;) tasks = [] for n in range(190, 200): tasks.append((loop.create_task(get_html(n)), n)) for task, n in tasks: html = await task title = get_title(html, n) print(Fore.WHITE + f"Title found: {title}", flush=True) if __name__ == '__main__': main()
同样的步骤生成profile 图:
可见现在耗时为大约3.8s,基本符合我们的预期了。
感谢你能够认真阅读完这篇文章,希望小编分享的“如何使用PyCharm Profile分析异步爬虫效率”这篇文章对大家有帮助,同时也希望大家多多支持创新互联,关注创新互联行业资讯频道,更多相关知识等着你来学习!