新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
content是个Response对象的属性 (有点类似变量), 而decode是bytes的一个方法
创新互联是专业的万荣网站建设公司,万荣接单;提供成都网站建设、成都做网站,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行万荣网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!
方法在使用(调用/执行)的时候是需要加括号的, 如果不加括号就会返回这个方法本身(类似函数指针), 而变量/成员字段/属性是不能加括号的(除非它实现了__call__()方法)
首先,我们要明白,什么是属性,什么是方法。下面看一个例子:
# -*- coding:utf8 -*-a = 1b = 2def func():
print 'func'
class example(object):
first = 1 # 定义变量 first
second = “two”
def myfunc(self): # 定义函数
print "myfunc."
上面的简单例子中,a和b是属性么?不是,它们是全局变量(相对当前例子而言)。func是方法么,不是,它是函数。
attribute(属性)是class(类)中的成员变量,而method(方法)则是class(类)中的function(函数)。也可以理解,属性就类变量,方法就是类函数。那我们看看class example中的attribute。
dir(eaxmple)
不用奇怪为何myfunc也在其中,python一切皆为对象,dir(object)会返回当前object的所有内建方法,属性等。
类中的变量就是静态变量,类可以直接访问,而方法则必须要绑定instance(实例)才可以访问。请记住Python是一门动态语言,任何实例都可以动态地添加或删除属性。一个类定义了一个作用域,类实例也引入了一个作用域,这与对应类定义的作用域是不同的。在类实例中查找属性的时候,首先在实例自己的作用域中查找,如果没有找到,则再去类定义的作用域中查找。在对类实例属性进行赋值的时候,实际上会在类实例定义的作用域中添加一个属性或修改一个属性,但并不会影响到对应类中定义的同名属性。
为了直观的感受实例访问属性和方法调用都做了什么,我们对代码进行了如下修改。
class example(object):
first = 1 # 定义变量 first
second = "two"
def my_func(self): # 定义方法 my_func
print "This is my func."
def __getattribute__(self, *args, **kwargs):
print "__getattribute__ is called"
return object.__getattribute__(self, *args, **kwargs) def __getattr__(self, attrname):
print("__getattr__() is called ")
return attrname + " :This my exception deal."
def __setattr__(self, attrname, value):
print("__setattr__() is called")
return object.__setattr__(self, attrname, value)
首先,我们对类进行实例化。
test = example()
我们先对属性进行访问
看来实例test访问属性通过了内建方法__getattribute__,那么我们再对访问类方法
我们发现内建方法__getattribute__再次被调用了。所以,实例访问属性和调用方法,是没有区别的。
拓展
我们又重写了__getattr__和__setattr__,那么这两个是干什么的呢。
哦,原来对实例添加属性并赋值的时候,会调用__setattr__,而访问属性,还是老方法。如果对没有的属性进行访问,就会抛出AttributeError,这时候,为了避免这种情况,__getattr__就派上了用处。
首先访问属性four,在实例作用域并没有找到,再去对应类的作用域,依然未找到,解释器就会抛出AttributeError,这时候__getattr__就会调用(当程序抛出Attribute时),这时候就会返回我们设置的默认值。
parameter 是函数定义的参数形式
argument 是函数调用时传入的参数实体。
对于函数调用的传参模式,一般有两种:
此外,
也是关键字传参
python的函数参数定义一般来说有五种: 位置和关键字参数混合 , 仅位置参数 , 仅关键字参数 , 可变位置参数 , 可变关键字参数 。其中仅位置参数的方式仅仅是一个概念,python语法中暂时没有这样的设计。
通常我们见到的函数是位置和关键字混合的方式。
既可以用关键字又可以用位置调用
或
这种方式的定义只能使用关键字传参的模式
f(*some_list) 与 f(arg1, arg2, ...) (其中some_list = [arg1, arg2, ...])是等价的
网络模块request的request方法的设计
多数的可选参数被设计成可变关键字参数
有多种方法能够为函数定义输出:
非常晦涩
如果使用可变对象作为函数的默认参数,会导致默认参数在所有的函数调用中被共享。
例子1:
addItem方法的data设计了一个默认参数,使用不当会造成默认参数被共享。
python里面,函数的默认参数被存在__default__属性中,这是一个元组类型
例子2:
在例子1中,默认参数是一个列表,它是mutable的数据类型,当它写进 __defauts__属性中时,函数addItem的操作并不会改变它的id,相当于 __defauts__只是保存了data的引用,对于它的内存数据并不关心,每次调用addItem,都可以修改 addItem.__defauts__中的数据,它是一个共享数据。
如果默认参数是一个imutable类型,情况将会不一样,你无法改变默认参数第一次存入的值。
例子1中,连续调用addItem('world') 的结果会是
而不是期望的
处理属性的重要属性和函数
1、特殊属性
__class__:对象所属类的引用(即obj.__class__和type(obj)的作用相同)。Python中的某些特殊方法比如 __getattr__,只在对象的类中寻找,而不在实例中寻找。__dict__:一个映射,存储对象或类的可写属性。__slots__:类可以定义这个属性,限制实例有哪些属性。
2、内置函数
dir([object]):列出对象的大多数属性。getattr(object,name[,default]):从object对象中获取name字符串对应的属性。获取的属性可能来自对象所属的类或超类。hasattr(object,name):若object对象中存在指定的属性,或者能以某种方式(如继承)通过object对象获取指定的属性,返回True。setattr(object,name,value):把object对象指定属性的值设为value,前提是object对象能接受那个值。这个函数可能会创建一个新属性,或者覆盖现有的属性。var([object]):返回object对象的__dict__属性。
相关推荐:《Python视频教程》
3、特殊方法
__delattr__(self,name):只要使用del语句删除属性,就会调用这个方法。__dir__(self):把对象传给dir函数时调用,列出属性。__getattr__(self,name):仅当获取指定的属性失败,搜索过obj,Class和超类之后调用。__getattribute__(self,name):尝试获取指定的属性时总会调用这个方法。不过寻找的属性是特殊属性或特殊方法时除外。为了防止无限递归,__getattribute__方法的实现要使用super().__getattribute__(obj,name)。__setattr__(self,name,value):尝试设置指定的属性时总会调用这个方法。点号和setattr内置函数会触发这个方法。
相关推荐:
Python中的属性和特性是什么
关于@property装饰器
在Python中我们使用@property装饰器来把对函数的调用伪装成对属性的访问。
那么为什么要这样做呢?因为@property让我们将自定义的代码同变量的访问/设定联系在了一起,同时为你的类保持一个简单的访问属性的接口。
举个栗子,假如我们有一个需要表示电影的类:
1
2
3
4
5
6
7
8
class Movie(object):
def __init__(self, title, description, score, ticket):
self.title = title
self.description = description
self.score = scroe
self.ticket = ticket
你开始在项目的其他地方使用这个类,但是之后你意识到:如果不小心给电影打了负分怎么办?你觉得这是错误的行为,希望Movie类可以阻止这个错误。 你首先想到的办法是将Movie类修改为这样:
Python
1
2
3
4
5
6
7
8
class Movie(object):
def __init__(self, title, description, score, ticket):
self.title = title
self.description = description
self.ticket = ticket
if score 0:
raise ValueError("Negative value not allowed:{}".format(score))
self.score = scroe
但这行不通。因为其他部分的代码都是直接通过Movie.score来赋值的。这个新修改的类只会在__init__方法中捕获错误的数据,但对于已经存在的类实例就无能为力了。如果有人试着运行m.scrore= -100,那么谁也没法阻止。那该怎么办?
Python的property解决了这个问题。
我们可以这样做
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Movie(object):
def __init__(self, title, description, score):
self.title = title
self.description = description
self.score = score
self.ticket = ticket
@property
def score(self):
return self.__score
@score.setter
def score(self, score):
if score 0:
raise ValueError("Negative value not allowed:{}".format(score))
self.__score = score
@score.deleter
def score(self):
raise AttributeError("Can not delete score")
这样在任何地方修改score都会检测它是否小于0。
property的不足
对property来说,最大的缺点就是它们不能重复使用。举个例子,假设你想为ticket字段也添加非负检查。下面是修改过的新类:
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class Movie(object):
def __init__(self, title, description, score, ticket):
self.title = title
self.description = description
self.score = score
self.ticket = ticket
@property
def score(self):
return self.__score
@score.setter
def score(self, score):
if score 0:
raise ValueError("Negative value not allowed:{}".format(score))
self.__score = score
@score.deleter
def score(self):
raise AttributeError("Can not delete score")
@property
def ticket(self):
return self.__ticket
@ticket.setter
def ticket(self, ticket):
if ticket 0:
raise ValueError("Negative value not allowed:{}".format(ticket))
self.__ticket = ticket
@ticket.deleter
def ticket(self):
raise AttributeError("Can not delete ticket")
可以看到代码增加了不少,但重复的逻辑也出现了不少。虽然property可以让类从外部看起来接口整洁漂亮,但是却做不到内部同样整洁漂亮。
描述符登场
什么是描述符?
一般来说,描述符是一个具有绑定行为的对象属性,其属性的访问被描述符协议方法覆写。这些方法是__get__()、__set__()和__delete__(),一个对象中只要包含了这三个方法中的至少一个就称它为描述符。
描述符有什么作用?
The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance, a.x has a lookup chain starting witha.__dict__[‘x’], then type(a).__dict__[‘x’], and continuing through the base classes of type(a) excluding metaclasses. If the looked-up value is an object defining one of the descriptor methods, then Python may override the default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on which descriptor methods were defined.—–摘自官方文档
简单的说描述符会改变一个属性的基本的获取、设置和删除方式。
先看如何用描述符来解决上面 property逻辑重复的问题。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class Integer(object):
def __init__(self, name):
self.name = name
def __get__(self, instance, owner):
return instance.__dict__[self.name]
def __set__(self, instance, value):
if value 0:
raise ValueError("Negative value not allowed")
instance.__dict__[self.name] = value
class Movie(object):
score = Integer('score')
ticket = Integer('ticket')
因为描述符优先级高并且会改变默认的get、set行为,这样一来,当我们访问或者设置Movie().score的时候都会受到描述符Integer的限制。
不过我们也总不能用下面这样的方式来创建实例。
a = Movie()
a.score = 1
a.ticket = 2
a.title = ‘test’
a.descript = ‘…’
这样太生硬了,所以我们还缺一个构造函数。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Integer(object):
def __init__(self, name):
self.name = name
def __get__(self, instance, owner):
if instance is None:
return self
return instance.__dict__[self.name]
def __set__(self, instance, value):
if value 0:
raise ValueError('Negative value not allowed')
instance.__dict__[self.name] = value
class Movie(object):
score = Integer('score')
ticket = Integer('ticket')
def __init__(self, title, description, score, ticket):
self.title = title
self.description = description
self.score = score
self.ticket = ticket
这样在获取、设置和删除score和ticket的时候都会进入Integer的__get__、__set__,从而减少了重复的逻辑。
现在虽然问题得到了解决,但是你可能会好奇这个描述符到底是如何工作的。具体来说,在__init__函数里访问的是自己的self.score和self.ticket,怎么和类属性score和ticket关联起来的?
描述符如何工作
看官方的说明
If an object defines both __get__() and __set__(), it is considered a data descriptor. Descriptors that only define __get__() are called non-data descriptors (they are typically used for methods but other uses are possible).
Data and non-data descriptors differ in how overrides are calculated with respect to entries in an instance’s dictionary. If an instance’s dictionary has an entry with the same name as a data descriptor, the data descriptor takes precedence. If an instance’s dictionary has an entry with the same name as a non-data descriptor, the dictionary entry takes precedence.
The important points to remember are:
descriptors are invoked by the __getattribute__() method
overriding __getattribute__() prevents automatic descriptor calls
object.__getattribute__() and type.__getattribute__() make different calls to __get__().
data descriptors always override instance dictionaries.
non-data descriptors may be overridden by instance dictionaries.
类调用__getattribute__()的时候大概是下面这样子:
1
2
3
4
5
6
7
def __getattribute__(self, key):
"Emulate type_getattro() in Objects/typeobject.c"
v = object.__getattribute__(self, key)
if hasattr(v, '__get__'):
return v.__get__(None, self)
return v
下面是摘自国外一篇博客上的内容。
Given a Class “C” and an Instance “c” where “c = C(…)”, calling “c.name” means looking up an Attribute “name” on the Instance “c” like this:
Get the Class from Instance
Call the Class’s special method getattribute__. All objects have a default __getattribute
Inside getattribute
Get the Class’s mro as ClassParents
For each ClassParent in ClassParents
If the Attribute is in the ClassParent’s dict
If is a data descriptor
Return the result from calling the data descriptor’s special method __get__()
Break the for each (do not continue searching the same Attribute any further)
If the Attribute is in Instance’s dict
Return the value as it is (even if the value is a data descriptor)
For each ClassParent in ClassParents
If the Attribute is in the ClassParent’s dict
If is a non-data descriptor
Return the result from calling the non-data descriptor’s special method __get__()
If it is NOT a descriptor
Return the value
If Class has the special method getattr
Return the result from calling the Class’s special method__getattr__.
我对上面的理解是,访问一个实例的属性的时候是先遍历它和它的父类,寻找它们的__dict__里是否有同名的data descriptor如果有,就用这个data descriptor代理该属性,如果没有再寻找该实例自身的__dict__,如果有就返回。任然没有再查找它和它父类里的non-data descriptor,最后查找是否有__getattr__
描述符的应用场景
python的property、classmethod修饰器本身也是一个描述符,甚至普通的函数也是描述符(non-data discriptor)
django model和SQLAlchemy里也有描述符的应用
Python
1
2
3
4
5
6
7
8
9
10
11
12
class User(db.Model):
id = db.Column(db.Integer, primary_key=True)
username = db.Column(db.String(80), unique=True)
email = db.Column(db.String(120), unique=True)
def __init__(self, username, email):
self.username = username
self.email = email
def __repr__(self):
return 'User %r' % self.username
后记
只有当确实需要在访问属性的时候完成一些额外的处理任务时,才应该使用property。不然代码反而会变得更加啰嗦,而且这样会让程序变慢很多。
在开发中我们可以借助于相关插件或使用Python内置函数"help()”来查看某个函数的参数说明,以查看内置函数sorted()为例:
函数参数包括:必选参数、默认参数、可选参数、关键字参数。
1、默认参数:放在必选参数之后,计算x平方的函数:
这样的话每次计算不同幂函数都要重写函数,非常麻烦,可使用以下代码计算:
默认参数最大好处就是降低调用函数的难度。
2、可变参数:就是传入的参数个数是可变的,可以是1个、2个到任意个,还可以是0个,在参数前面加上*就是可变参数。在函数内部,参数numbers接收得到的是一个tuple,调用该函数时,可以传入任意个参数,包括0个参数:
也可以类似可变参数,先组装一个dict,然后,把该dict转换为关键字参数传进去: