新网创想网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

gis与IT信息技术结合 gis地理信息技术

地理信息系统

地理信息系统是计算机科学、地理学、测量学和地图学等多门学科的交叉,它是以地理空间数据库为基础,采用地理模型分析方法实时提供多种空间的和动态的地理信息,为地理研究和地理决策服务的计算机技术系统。

专业从事网站设计、成都网站设计,高端网站制作设计,微信小程序定制开发,网站推广的成都做网站的公司。优秀技术团队竭力真诚服务,采用HTML5建站+CSS3前端渲染技术,响应式网站开发,让网站在手机、平板、PC、微信下都能呈现。建站过程建立专项小组,与您实时在线互动,随时提供解决方案,畅聊想法和感受。

从表现形式来看,GIS表现为计算机软硬件系统,其核心是管理、计算、分析地理坐标位置信息及相关位置上属性信息的数据库系统。它表达的是空间位置及所有与位置相关的信息,所以,GIS又是地球空间实体的再现和综合,其信息的基本表达形式是各种二维或三维电子地图。因此,GIS也可简单定义为“用于采集、模拟、处理、检索、分析和表达地理空间数据的计算机信息系统”。

(一)GIS发展简史

GIS最早起源于20世纪60年代“要把地图变成数字形式的地图,便于计算机处理分析”这样的目的。1963年,加拿大测量学家R.F.Tomlinson首先提出了GIS这一术语,并建成世界上第一个GIS(加拿大地理信息系统,CGIS),用于自然资源的管理和规划。那时的GIS注重于空间数据的地学处理。

20世纪70年代以后,随着计算机软、硬件水平的提高,以及政府部门在自然资源管理、规划和环境保护等方面对空间信息进行分析、处理的需求,GIS得到了巩固和发展。

进入20世纪80年代,GIS的应用领域迅速扩大,商业化的软件开始进入市场,其应用从基础信息管理与规划转向空间决策支持分析,地理信息产业的雏形开始形成。

20世纪90年代以后,伴随着计算机技术和网络技术的迅猛发展,GIS的应用也日趋深化和广泛,在国土资源、农业、气象、环境、城市规划等领域成为常备的工作系统。尤其是1998年“数字地球”的概念被提出以后,GIS在全球得到了空前迅速的发展,广泛应用于各个领域,产生了巨大的经济和社会效益。

我国GIS的发展自20世纪80年代初开始,以1980年中国科学院遥感应用研究所成立全国第一个GIS研究室为标志,经历了准备(1980~1985年)、发展(1985~1995年)、产业化(1996年以后)3个阶段。尤其是近年来,国内出现了不少优秀的GIS软件。

(二)GIS的最新发展

1.日趋与计算机信息技术融合

近年来随着计算机软、硬件技术和通信技术的高速发展,GIS技术也得到了迅速的发展和更广泛的应用,并日趋与主流IT技术融合,成为信息技术发展的一个新方向。

GIS发展的动力一方面来自于日益广泛的应用领域对GIS不断提高的要求;另一方面,计算机科学的飞速发展为GIS提供了先进的工具和手段。许多计算机领域的新技术,如面向对象技术、三维技术、图像处理和人工智能技术都可以直接应用到GIS中;同时,由于空间技术的迅猛发展,特别是遥感技术的发展,提供了地球空间环境中不同时相的数据,使GIS的作用日渐突出,GIS不断升级并能提供存储、处理和分析海量地理数据的环境。

组件式GIS技术的发展使之可以与其他计算机信息系统无缝集成、跨语言使用,并提供了无限扩展的数据可视化表达形式。

2.动态、多源、多维、网络化

最新GIS技术将逐渐摆脱先前的主要处理静态的、二维的、数字式的地图技术的约束,而从传统的静态地图、电子地图发展到能对空间信息进行可视化和动态分析、动态模拟,支持动态的、可视化的、交互的环境来处理、分析、显示多维和多源地理空间数据。其中,可视化仿真技术能使人们在三维图形世界中直接对具有形态的信息进行实时交互操作;虚拟现实技术以三维图形为主,结合网络、多媒体、立体视觉、新型传感技术,能创造一个让人身临其境的虚拟的数字地球或数字城市。

先进的对地观测技术、互操作技术、海量数据存储和压缩技术、网络技术、分布式技术、面向对象技术、空间数据仓库、数据挖掘等技术的发展都为GIS的发展和创新创造了新的手段。

(三)第四代GIS技术

随着计算机硬件性能的提高以及面向对象、网络和数据挖掘等主流IT技术的发展,在科技部有关部门的倡导下,目前国内学术界又提出了第四代GIS技术的概念。第四代GIS技术将主要有如下特点:

(1)支持“数字地球”或“数字城市”概念的实现,从二维向多维发展,从静态数据处理向动态数据处理发展,具有时序数据处理能力。

(2)基于网络的分布式数据管理及计算、WebGIS和B/S体系结构,用户可以实现远程空间数据调用、检索、查询、分析,具有联机事务管理(OLTP)和联机分析(OLAP)管理能力。

(3)面向空间实体及其相互关系的数据组织和融合,具有矢量和遥感影像数据互动等多源数据的装载与融合能力,可实现多尺度比例尺数据无缝融合与互动。

(4)具有统一的海量数据存储、查询和分析处理能力及基于空间数据的数据挖掘和强大的模型支持能力。

(5)具有与其他计算机信息系统的整体集成能力。例如与MIS、ERP、OA等各种企业信息化系统的无缝集成;微型、嵌入式GIS与各种掌上终端设备集成,如PDA、手机、GPS接收设备等。

(6)具有虚拟现实表达及自适应可视化能力,针对不同的用户出现不同的用户界面及地图和虚拟现实效果。

(四)GIS的应用

人类使用的信息中有80%与地理位置和空间分布有关,所以GIS具有非常广泛的应用。目前,GIS已经比较成熟地应用于军事、自然资源管理、土地和城市管理、电力、电信、石油和天然气、城市规划、交通运输、环境监测和保护、110和120快速反应系统等。

今后,GIS的应用将在市场分析、企业客户关系管理、银行、保险、人口统计、房地产开发、个人位置服务等领域得到广泛的应用,这些领域将是GIS产业发展的新的增长点。实际上,GIS的应用将加速度地深入人们的工作和生活的各个方面。GoogleEarth的流行就是GIS技术深入到日常生活每一个角落的明证。

由于地理信息在人类生活和国民经济中的重要作用,GIS在未来的几十年中将保持高速发展的势头,成为IT高科技领域的核心技术。

近几年来,随着移动通信技术的发展,GIS的应用范围迅速扩展到人们的日常生活中。集成GIS、GPS、GSM的技术已开始广泛应用于车辆安全防范系统和调度系统,为人们提供车辆反劫防盗、报警、道路指引、医疗救护以及在此系统平台基础上扩展各种电子商务增值服务。

以医疗救护为例,当患者向监控中心请求急救时,监控中心可以从GIS电子地图上查看到患者的具体位置,并同时搜索最近的急救车辆,让最近的车辆前去接患者。患者进入救护车后,监控中心可以通过双向通话功能,指导救护车上的医生实施救护治疗,同时通过GIS的最优路径功能,给救护车指引道路,使其以最快的速度到达医院或急救中心。而在救护车行进的过程中,患者的家属可以通过互联网立即上网查询救护车的行进位置及患者的状态信息。通过GIS,并结合GPS和GSM无线通信及网络,使患者、家属、救护车及医生之间建立了无缝沟通体系,最终使患者能得到快速、及时的治疗。

如果在车辆移动目标、家居固定点目标、重点保护单位甚至路灯上都安装了GPS、GSM或其他无线通信设备,那么我们在城市生活中,无论是开车、行走或者是在单位、在家里,都可以通过由GIS、GPS、互联网以及无线通信技术构成的综合服务系统获得急救、报警和各种商务服务,真正使我们处于立体的、全方位的数字化生活中,体验数字空间高科技价值。

GIS、RS、GPS等构成的空间信息技术将是未来发展最快的、最激动人心的领域之一,它结合通信及其他IT技术,为人类展现了一种全新的工作和生活模式(A.R.Mermut,H.Eswaran,2001)。当利用最新的GIS技术把城市、国家乃至整个地球都高度浓缩到计算机屏幕上的时候,人类对自己的命运和未来就有了更充分的把握。

(五)GIS与土地管理

GIS早已不限于地理学研究和应用的领域,目前已与各行各业和我们的日常生活产生了千丝万缕的联系,更重要的是它的应用领域还在不断扩大,甚至可触及企业信息化的过程中。

GIS应用于土壤科学的研究,它是现实世界的一个模型和模拟实现。土壤资源信息可以在GIS系统中进行存取、变换和对话式操作,作为土壤资源分类、评价、规划、管理与利用决策的依据,为土壤资源可持续利用服务。GIS应用于土壤学研究的各个方面,包括:①土壤制图技术及土壤采样技术;②土壤侵蚀预测与评价;③土壤资源污染与防治;④土壤养分流失评价;⑤土壤资源评价和管理;⑥作物生长模拟等。具体如1983年美国土壤保持局开发出农用土地评价和用地估计系统,系统中的农用土地评价包括土壤生产力的分等定级、土壤适宜性评价、土壤生产力潜力评价。1989年美国土壤保持局运用土壤信息系统保护土壤生态环境,控制土壤污染。1990年土壤侵蚀预测模型在土壤信息系统中已经能够成功运用,主要采用的分析手段有土壤侵蚀诺漠图、微机软件图、小溪河岸侵蚀诺漠图。

1.建立为农业生产服务的应用系统

如日本的农耕地土地资源信息系统,它包括了土壤信息系统、作物栽培试验信息系统、农业气象信息系统等子系统;保加利亚的计算机农业综合管理系统从20世纪80年代初开始运行。

进入20世纪90年代,GIS在土壤学研究领域的应用方面继续拓展,其作用和地位日益受到关注。从1994年开始的第15、16、17届国际土壤大会上持续讨论了土壤信息系统在持续农业和全球变化中的应用、土壤数据库的结构和联网等有关问题。同时,在应用上进一步趋向农业实际生产,直接服务于农场管理和经营,如进行农业技术咨询、牧场水源选点、作物生产管理、机械化施肥等方面。

中国的土壤工作者于20世纪80年代中期也开始进行土壤数据库建立、土壤信息系统的研制和应用工作。1986年底,北京大学遥感中心等主持了土壤侵蚀信息系统研究,建立了区域土壤侵蚀信息系统,这是我国较早关于土壤信息系统方面的研究。1989年,南京土壤研究所用两年时间研究了1∶50万东北三江平原土壤信息系统土壤图与数据库的建立;1990年,又研究了1∶5万江西红壤生态站土壤信息系统土壤侵蚀图;1991年,在“利用信息系统技术编制土壤退化图”研究中,应用从土壤土地数据库建立到土壤退化评价方法等一系列现代信息系统技术,编制出了实验区的土壤水蚀危害和风蚀评价图;1992年,又基本完成了海南岛土壤和土地利用信息库及信息系统制图工作。1991年,中国科学院沈阳应用生态研究所主持了“区域微机土壤信息系统的建立与应用”研究,在吉林省农安县的试验结果表明,这是一个简单但实用的土壤信息系统。1999年,胡月明等运用基本土壤数据库建立了红壤分类和评价的信息系统。

2.预测土壤空间变化及分布

由于GIS技术在土壤制图中的深入应用,怎样更准确地由有限的单个点位的土壤原始数据分析土壤属性的空间分布成为关注的焦点。具体来说,由于土壤数据库的信息来源于土壤分类、分色制图及制图的综合,产生了土壤空间分异类型的位移,而现代GIS技术又要求大量信息源,因此许多土壤科学家将兴趣集中到土壤空间变异性正确表达(即土壤图在GIS中的正确表达)的研究上。

(1)地形分析。Morre、Bourennane、Gessier和Oden等的研究均表明,某地区土壤属性与该地区的地形地貌特征和景观位置有明显的相关性,也就是与土壤的成土过程密切相关,可用下式表示:

中国耕地质量等级调查与评定(广东卷)

式中:

Si——土壤属性如土壤厚度、pH等;

i——由气候、母质、地貌历史、植被等因素决定的某地区海拔、坡度、坡形凹凸、水流长度和特定流域面积等原始地形数据可以通过一定精度的DEM计算出,复合地形数据,可以依经验判断或根据描述下垫面的物理发生过程的方程式进行简化。DEM可以由GIS技术生成,所以GIS的应用和地形分析可以提高土壤属性空间分布预测的精度。

(2)地质统计学与GIS的结合。GIS在存储、查询和显示地理数据方面发展得相当快,但在提供空间分析模块方面则发展得较慢。由于缺少通用的空间分析模块,使得GIS在解决某些空间问题中的应用受到很大的限制。

地质统计学是由南非矿山地质工程师D.G.Krige于1951年提出的,因此这一理论也以“克里格法”(Kriging)来命名,并由法国地质学家Dr.Matheron于1962年完善并创立。该学科在矿产储量研究方面起到了巨大作用。这是一种求最优、线形、无偏内插估计量值的方法(BLUE),在充分考虑信息样品的形状、大小及其与待估块段相互间的空间分布位置等几何特征以及品位的空间结构以后,利用变异函数(Varigram)为工具,对每一样品值分别赋予一定的权系数,加权平均来估计块段品位。

国内外土壤科学家已广泛地应用克里格法来预测非采样点的土壤属性,常用的方法有普通克里格法(OK)、泛克里格法(UK)、指示克里格法(IK)、协同克里格法(CK)、回归克里格法(RK)、点克里格法(PK)、块克里格法(BK)等。他们的研究还表明,在应用克里格法建立模型的时候,综合应用土壤和土地信息,如土壤分类、参比地区土壤属性、坡度、高程等,可以大大提高克里格法的插值精度,还可以降低由于测定大量样品而需要的成本,也可以减少由于样品点太少而带来的误差。我国从20世纪80年代开始利用克里格法研究土壤参数的空间变异性,2000年以后在这方面的报道已经越来越多。

近几年来,一些学者开始研究地质统计学和GIS之间的相互关系,并在GIS软件中提供一些空间分析功能。例如,美国圣巴巴拉NCGIA的SAN模型提供了在ArcGIS软件中计算和显示空间自相关和其他空间量的功能,二者的相互结合一方面可以大大加强GIS的分析功能,使大量数据所隐含的空间信息得以表达,发挥更大的作用;另一方面,也可以增强空间分析的能力。考虑到空间分析技术目前的发展十分迅速,新理论不断出现,空间分析模块已经成为GIS中的必选模块。

GIS是什么?GIS开发主要从事什么方面的开发?

GIS软件开发(第一讲).ppt免费下载

链接:

提取码:54pe  

地理信息系统(Geographic Information System或 Geo-Information system,GIS)有时又称为“地学信息系统”。它是一种特定的十分重要的空间信息系统。它是在计算机硬、软件系统支持下,对整个或部分地球表层(包括大气层)空间中的有关地理分布数据进行采集、储存、管理、运算、分析、显示和描述的技术系统。

GIS在ITS中的应用(交通地理信息系统在智能运输系统中的应用)

近年来,随着地理信息系统的飞速发展,越来越多的应用领域同GIS技术建立了紧密的联系。由于交通信息系统具有精度要求高、规则复杂、动态化、离散化等特点,原有的信息技术已经不能完全满足交通应用的需求,而借助于GIS的强大功能,可以实现交通信息化的时代要求。交通领域中GIS的应用也越来越受到研究者和开发者的重视。

交通地理信息系统是收集、整理、存储、管理、综合分析和处理空间信息和交通信息的计算机软硬件系统〔2〕,是GIS技术在交通领域的延伸,是GIS与多种交通信息分析和处理技术的集成。GIS-T具有强大的交通信息服务和管理功能,它可以应用在交通管理的各个环节。在交通工程领域采用GIS技术和方法研究交通规划、交通建设和交通管理及其相关的问题,具有其他传统方法无可比拟的优点。

20世纪60年代,美国人口统计局建立了DIME以及后来的TIGER数据模型,当时他们就采用了基于点和线的一维线性网络来表达道路系统。在那些与点线相连的属性表中,记录了点线的各种属性信息。一直以来,这种模式都是道路交通系统表达模型的一个主流。但是随着社会和经济的发展,道路交通系统变得日益复杂,对交通地理信息系统的要求越来越高,GIS-T将面临更多的挑战。

3GIS-T关键技术

GIS-T是改进了的GIS和TIS(交通信息系统)的结合体。目前很多研究人员致力于GIS-T的研究与开发,围绕着GIS-T产生了较多的研究课题,不同的研究课题涉及到的GIS-T的功能也有所区别。为了进行详细说明,可以通过定义3个功能组来获得一个通用的框架,这3个功能组是:数据管理(实现数据存储和维护)、数据操作(实现原始数据的创新)、数据分析或者建立可分析的模型。它们是相互依赖相互支持的,数据存储是数据操作的前提,而数据的建模又是在前两个的基础上建立起来的。

3.1数据库管理系统

长期以来,交通部门要使用和维护大量的信息,在很多情况下都是多个交通信息系统共存于同一个部门中,而且每一个交通信息系统只能处理某一类数据信息(如高速公路规划网、公路管理系统以及事故信息等)。GIS-T的数据管理系统的关键技术在于通过建立数据模型和数据交换的框架,把上述不同的数据存储于一个统一的数据管理系统中,任何部门都能访问到该系统中符合本部门要求的数据,同时能对这些数据进行分析和建模,然后进行管理和决策。

3.2数据协同

交通数据一般都是由多个机构提供并维护,数据类型、数据标准难以统一。每个数据源可能都有自己的数据模型。数据模型的不同和使用方法的多样性给数据管理分析造成了很大问题。由于数据位置、拓扑结构、分类、命名和属性、线性测量的误差,导致不同来源数据的统一过程比较复杂,结果存在很大的不确定性。要使GIS技术在交通领域取得进展,必须借助数据协同技术,从地图的匹配算法、交通数据的错误模型和错误传播(尤其是一维数据模型)、数据质量标准和数据交换标准三个方面解决数据统一的问题。

随着地理数据越来越广泛的应用,协同性主题逐渐成为GIS-T领域中的一个最为紧迫的课题。在详细的数字街道数据库、紧急事件的安排和调度系统、车辆导航系统以及ITS(智能交通系统)的各个部分(包括测量使用者和运输控制中心或者信息服务提供商之间的无线通讯)都必须应用数据协同技术。

3.3实时GIS-T

地理数据的收集是一个持续的过程。近年来,已经开始出现实时基础上的数据操作。例如,带有全球定位系统GPS的车辆

提供速度、位置等要素信息到运输管理中心,管理中心再根据发送的交通信息将预测信息返回给车辆,这样就组成了地区的阻塞管理系统。由此可见,进行实时数据的存储、恢复、处理和分析需要更快的数据访问模式、更强大的空间数据融合技术以及动态路由算法。

3.4庞大的数据集

现实世界的交通问题涉及到庞大的地理数据和复杂的网络。地理信息科学对地理可视化和数据采集的规则、技术发现和数据获得的计算方法进行了研究和集成,同时也促进了GIS-T的发展。

由于交通数据集大小的不同,就需要经常更新系统设计,这个系统设计包括了信息显示的精确性、速度上的优化、算法运行时间与流程中的分析工具以及网络分析的优化。

3.5分布式计算

互联网技术提供的可连接性改变了计算机、应用软件、数据和用户之间的关系。计算机已经形成了一个可移动的、分布式的、普遍存在的实体。基于互联网的GIS应用变得越来越普遍(包括在交通领域中)。以通讯网络技术为基础的分布式计算技术可以有效地使用本地和远程的计算资源,借助完善的系统资源,实现适时应用的构想。

4GIS-T中面临的问题及解决方案

4.1多格式数据源集成问题

GIS中最基础的部分是数据,在GIS-T中也不例外。但是多年来,一方面由于缺乏权威的专业数据公司制作并出售基础的地理数据,所需的数据来源没有保证,导致了大量的人力物力花费在制作基础数据的工作上;另一方面,对已有的数据没有充分加以利用,各部门积累下来的基础数据由于数据格式和规划不统一,难于共享利用,这样不仅加大了成本,而且还延长了建设的周期。因此,实现多源数据集成、解决多格式数据源集成是近年来GIS-T系统研制开发的重要课题。目前,方案有以下3种:

(1)据格式转换模式:把其它的数据格式经专门的数据转换程序进行格式转换后,复制到当前系统的数据库或文件中。

(2)数据互操作模式:这是Open GIS Consortium(OGC)制定的规范,GIS互操作是指在异构数据库和分布式计算的情况下,GIS用户在相互理解的基础上,能够透明地获取所需的信息。

(3)直接数据访问模式:就是在一个GIS软件中实现对其它软件数据格式的直接访问,用户可以使用单个GIS软件存储多种数据格式。

4.2交通地理现象的表达

GIS-T中涉及3类模型:①区域模型,即在跨越空间时代表连续变化的现象;②离散实体模型,也就是离散的实体(点、线或多边形)及其相关属性的集合的抽象表达;③网络模型,代表拓扑连接的嵌于地表的线性网络变化的抽象表达。由于交通系统自身的特性,应用于交通系统的数据模型几乎都没有超出上述的三种模型的范围。

在对交通模型进行表达的时候,可以用许多具有多种属性的线段代表道路网,用离散点代表各种道路网中的标志性地物,用线性网络代数对交通网络进行分析,这些方法对实现道路交通系统的计算机表示起到了一定的作用。在交通领域中,围绕以弧和点的概念建立的网络模型起的作用是最重要的。实际上,在许多交通应用中,只需要单个的表示数据的网络模型就可以了。这种应用的例子包括:

(1)人行道以及其它设备管理系统;

(2)实时与下线行程安排;

(3)基于网络的交通信息系统和行程计划任务;

(4)导航系统;

(5)实时交通堵塞管理和事故发现等。

5结语

在交通领域,GIS-T被公认为21世纪的支柱性产业,是信息产业的重要组成部分。随着GIS技术研究的进一步深入,目前GIS-T中存在的问题会逐步得到解决,这必定会促进GIS-T的各个方面的应用和发展,大大地改变交通现状,带动整个交通行业的突飞猛进,成为促进经济发展的重要动力。

结合IT行业的发展和社会需求,简述GIS的发展趋势

(Geographical Information System, GIS)是一种采集、处理、存贮、管理、分析、输出地理空间数据及其属性信息的计算机信息系统。自20世纪60年代诞生以来,GIS发展迅速,应用也日趋深化和广泛,逐步融入信息技术(IT)的主流,正在成为信息产业新的增长点,是发展潜力巨大的地理信息产业的主要组成部分之一。如今GIS的应用已经成为我国国民经济和社会信息化建设的亮点,日益深入到各个专业领域和百姓日常生活中。

随着计算机技术、网络技术、数据库技术等的发展以及应用的不断深化,GIS技术的发展呈现出新的特点和趋势,基于互联网的Web GIS就是其中之一。Web GIS除了应用于传统的国土、资源、环境等政府管理领域外,也正在促进与老百姓生活息息相关的车载导航、移动位置服务、智能交通、抢险救灾、城市设施管理、现代物流等产业的迅速发展。

GIS经历了单机环境应用向网络环境应用发展的过程,网络环境GIS应用从局域网内客户/服务器(Client/Server,C/S)结构的应用向Internet环境下浏览器/服务器(Browser/Server,B/S)结构的Web GIS应用发展。随着Internet的发展,Web GIS开始逐步成为GIS应用的主流,Web GIS相对于C/S结构而言,具有部署方便、使用简单、对网络带宽要求低的特点,为地理信息服务的发展奠定了基础。

然而,早期的Web GIS功能较弱,主要用于电子地图的发布和简单的空间分析与数据编辑,难以实现较为复杂的图形交互应用(如GIS数据的修改和编辑、制图)和复杂的空间分析,还无法取代传统的C/S结构的GIS应用,出现了B/S结构与C/S结构并存的局面,而C/S结构涉及客户端与服务器端之间大量数据转输,无法在互联网平台实现复杂的、大规模的地理信息服务。

随着电子政务和企业信息化(电子商务)的发展,构建由多个地理信息系统构成的信息系统体系,跨越传统的单个地理信息系统边界,实现多个地理信息系统之间的资源(包括数据、软件、硬件和网络)共享、互操作和协同计算,构建空间信息网格(Spatial Information Grid),成为GIS应用发展需要解决的关键技术问题。这要求将GIS的数据分析与处理的功能移到服务器端,通过多种类型的客户端(如PC、移动终端)上Web Browser或桌面软件调用服务器端的功能,来实现传统C/S结构GIS所具有的功能,最终使B/S结构取代C/S结构的应用,通过GIS应用服务器之间的互操作和协同计算,构建空间信息网格。

B/S结构应用已经由浏览器/网络服务器/数据服务器(Browser/Web Server/Data Server)三层架构阶段进入到浏览器/网络服务器/应用服务器/数据服务器(Browser/Web Server/Application Server/Data Server)四层架构阶段。在新的四层架构中,网络服务器和应用服务器分离,并且其间还可以插入二次开发和扩展功能,其中的应用服务器一般为支持远程调用的组件式GIS平台,或由组件式GIS平台封装而成。将GIS复杂数据分析与处理功能(编辑、拓扑关系的构建、对象关系的自动维护、制图)移到GIS应用服务器上,使客户端与服务端的数据传输减少到最少的程度,为在Internet上实现复杂、大规模的地理信息服务提供了可能。这一架构带来的巨大优势是使服务器端具有极强的扩展性,因此作为应用服务器的组件式GIS所具备的功能,都可以通过B/S结构实现,WebGIS不再是只能满足地图浏览和查询的简单软件了,而是一个体系先进,功能强大的服务器端GIS(Server GIS)。新的服务器端GIS将是未来应用的发展的主流。


分享题目:gis与IT信息技术结合 gis地理信息技术
转载来源:http://wjwzjz.com/article/dohighi.html
在线咨询
服务热线
服务热线:028-86922220
TOP