新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
public
创新互联-专业网站定制、快速模板网站建设、高性价比盐津网站开发、企业建站全套包干低至880元,成熟完善的模板库,直接使用。一站式盐津网站制作公司更省心,省钱,快速模板网站建设找我们,业务覆盖盐津地区。费用合理售后完善,十余年实体公司更值得信赖。
class
Lookup
{
/**
*
@param
args
*/
public
static
void
main(String[]
args)
{
//
TODO
Auto-generated
method
stub
/**
*
二分法查找
*/
int
a[]={23,45,98,100,110,120,140};
int
search=120;//记录要查找的元素
int
lower=0;//记录第一个元素
int
temp=a.length-1
;
int
index=-1;
while(lower=temp){
index
=
(lower+temp)/2;//记录中间元素,用两边之和除2.
int
currentValue=a[index];
if(currentValue==search){//如果得到的数与要查找的数相等则break退出;
break;
}else
if(currentValuesearch){//如果得到的数要小于查找的数、就用下标加1;否则减一
lower=index+1;
}else{
temp
=
index-1;
}
}
if(lower=temp){
System.out.println(search+"在数组中第:"+(index+1)+"位");
}else{
System.out.println("里面没有这个元素");
}
}
}
首先得告诉你,二分法的前提是必须是顺序方式存储,而且必须是排好序了的。比如要从100个数中查找某一个数,前提是这一百个数是排好序(这里假如从小到大)的,然后找到最中间的数,若最中间的数(这里是第50个)比你要找的这个数大那你只需要在1到49个数里找,然后再取最中间的数,再判断,如此往复下去,最多次数,你算算看,
public class ef {
public static void main(String[] args) {
int[] a = { 4, 8, 12, 44, 69, 71, 98, 132 ,133};
int m = ef.ef(a, 0, a.length, 71);
if(m!=-1){
System.out.println(a[m]+"====="+m);
}
System.out.println("不存在该数字");
}
public static int ef(int[] a, int from, int to, int b) {
int midel = (from + to) / 2;
if ((to - from) = 1 b != a[midel]) {
return -1;
}
if (b a[midel]) {
return ef(a, midel, to, b);
} else if (b a[midel]) {
return ef(a, from, midel, b);
} else {
return midel;
}
}
}
public static void insertSort(int[] data, int num) {
int left, right;
int middle, j;
// 准备
left = 0;
right = data.length - 2;
// 二分法查找插入位置
while (right = left) {
// 指向已排序好的中间位置
middle = (left + right) / 2;
if (num data[middle])
right = middle - 1;// 插入的元素在右区间
else
left = middle + 1; // 插入的元素在左区间
}
// 后移排序码大于R[i]的记录
for (j = data.length - 2; j = left; j--) {
data[j + 1] = data[j];
}
// 插入
data[left] = num;
}
public static void main(String[] args) {
int[] data1 = { 1, 2, 5, 7, 8, 9, 13, 0 };// 预留一位给需要排序插入的使用
//insertSort(data1, 0);
insertSort(data1, 6);
//insertSort(data1, 14);
for (int i = 0; i data1.length; i++) {
System.out.println(data1[i]);
}
}
什么是二分查找?
二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。
二分查找优缺点
优点是比较次数少,查找速度快,平均性能好;
其缺点是要求待查表为有序表,且插入删除困难。
因此,折半查找方法适用于不经常变动而查找频繁的有序列表。
使用条件:查找序列是顺序结构,有序。
过程
首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。
利用循环的方式实现二分法查找
public class BinarySearch {
public static void main(String[] args) {
// 生成一个随机数组 int[] array = suiji();
// 对随机数组排序 Arrays.sort(array);
System.out.println("产生的随机数组为: " + Arrays.toString(array));
System.out.println("要进行查找的值: ");
Scanner input = new Scanner(System.in);
// 进行查找的目标值 int aim = input.nextInt();
// 使用二分法查找 int index = binarySearch(array, aim);
System.out.println("查找的值的索引位置: " + index);
}
/** * 生成一个随机数组 *
* @return 返回值,返回一个随机数组 */
private static int[] suiji() {
// random.nextInt(n)+m 返回m到m+n-1之间的随机数 int n = new Random().nextInt(6) + 5;
int[] array = new int[n];
// 循环遍历为数组赋值 for (int i = 0; i array.length; i++) {
array[i] = new Random().nextInt(100);
}
return array;
}
/** * 二分法查找 ---循环的方式实现 *
* @param array 要查找的数组 * @param aim 要查找的值 * @return 返回值,成功返回索引,失败返回-1 */
private static int binarySearch(int[] array, int aim) {
// 数组最小索引值 int left = 0;
// 数组最大索引值 int right = array.length - 1;
int mid;
while (left = right) {
mid = (left + right) / 2;
// 若查找数值比中间值小,则以整个查找范围的前半部分作为新的查找范围 if (aim array[mid]) {
right = mid - 1;
// 若查找数值比中间值大,则以整个查找范围的后半部分作为新的查找范围 } else if (aim array[mid]) {
left = mid + 1;
// 若查找数据与中间元素值正好相等,则放回中间元素值的索引 } else {
return mid;
}
}
return -1;
}}
运行结果演示:
由以上运行结果我们得知,如果要查找的数据在数组中存在,则输出该数据在数组中的索引;如果不存在则输出 -1 ,也就是打印 -1 则该数在数组中不存在,反之则存在。
四、利用递归的方式实现二分法查找
public class BinarySearch2 {
public static void main(String[] args) {
// 生成一个随机数组 int[] array = suiji();
// 对随机数组排序 Arrays.sort(array);
System.out.println("产生的随机数组为: " + Arrays.toString(array));
System.out.println("要进行查找的值: ");
Scanner input = new Scanner(System.in);
// 进行查找的目标值 int aim = input.nextInt();
// 使用二分法查找 int index = binarySearch(array, aim, 0, array.length - 1);
System.out.println("查找的值的索引位置: " + index);
}
/** * 生成一个随机数组 * * @return 返回值,返回一个随机数组 */
private static int[] suiji() {
// Random.nextInt(n)+m 返回m到m+n-1之间的随机数 int n = new Random().nextInt(6) + 5;
int[] array = new int[n];
// 循环遍历为数组赋值 for (int i = 0; i array.length; i++) {
array[i] = new Random().nextInt(100);
}
return array;
}
/** * 二分法查找 ---递归的方式 * * @param array 要查找的数组 * @param aim 要查找的值 * @param left 左边最小值 * @param right 右边最大值 * @return 返回值,成功返回索引,失败返回-1 */
private static int binarySearch(int[] array, int aim, int left, int right) {
if (aim array[left] || aim array[right]) {
return -1;
}
// 找中间值 int mid = (left + right) / 2;
if (array[mid] == aim) {
return mid;
} else if (array[mid] aim) {
//如果中间值大于要找的值则从左边一半继续递归 return binarySearch(array, aim, left, mid - 1);
} else {
//如果中间值小于要找的值则从右边一半继续递归 return binarySearch(array, aim, mid + 1, array.length-1);
}
}}
运行结果演示:
总结:
递归相较于循环,代码比较简洁,但是时间和空间消耗比较大,效率低。在实际的学习与工作中,根据情况选择使用。通常我们如果使用循环实现代码只要不是太繁琐都选择循环的方式实现~
二分排序就是用先用二分查找法来查某一个元素,然后再用别的排序算法来进行排序。
package insert;
public class InsArrayApp {
public static void main(String[] args) {
int size = 100;
InsArray arr = new InsArray(size);
arr.insert(10);
arr.insert(9);
arr.insert(8);
arr.insert(7);
arr.insert(6);
arr.insert(10);
arr.insert(9);
arr.insert(8);
arr.insert(5);
arr.insert(4);
arr.insert(3);
arr.insert(2);
arr.insert(1);
arr.display();
// arr.insertSort();
// arr.display();
// System.out.println(arr.median());
// arr.noDups();
arr.noDups2();
arr.display();
}
}
class InsArray {
private int[] a;
private int nElems;
public InsArray(int size) {
a = new int[size];
nElems = 0;
}
public void insert(int value) {
a[nElems] = value;
nElems++;
}
public void display() {
for (int i = 0; i nElems; i++) {
System.out.print(a[i] + " ");
}
System.out.println();
}
public void insertSort() {
int out, in;
int copy = 0;
int compare = 0;
/* for(out = 1;outnElems;out++){
int tmp = a[out];
in = out;
while(in0a[in-1]=tmp){
a[in] = a[in-1];
--in;
}
a[in] = tmp;
}*/
for(out = 1;outnElems;out++){
int tmp = a[out];
in = out;
while(in0){
if(a[in-1]=tmp){
a[in] = a[in-1];
--in;
++copy;
++compare;}
else{
break;
}
}
++compare;
a[in] = tmp;
}
System.out.println("copy:" + copy + "compare:" + compare);
}
public int median(){
insertSort();
int m = nElems/2;
return a[m];
}
public void noDups(){
insertSort();
/*
InsArray tmp = new InsArray(nElems);
for(int i = 0;inElems;i++){
for(int j = i+1;jnElems;j++)
if(a[i] == a[j]){
a[j] = -1;
}
if(a[i]!=-1)
tmp.insert(a[i]);
}
*/
InsArray tmp = new InsArray(nElems);
int i;
for(int j = 0;jthis.nElems;j++){
/*if(tmp.nElems==tmp.find(this.a[j])) //binary find
tmp.insert(this.a[j]);
else
continue;*/
for( i = 0; i tmp.nElems; i++) { // for each element
if(tmp.a[i]==this.a[j]) // found searchKey?
break;
}
if(i==tmp.nElems) // no
tmp.insert(this.a[j]);
}
this.a = tmp.a;
this.nElems = tmp.nElems;
}
public int find(long searchKey) {
int lowerBound = 0;
int upperBound = nElems-1;
int curIn;
while(true) {
curIn = (lowerBound + upperBound)/2;
if(a[curIn]==searchKey)
return curIn;
else if(lowerBoundupperBound)
return nElems;
else {
if(a[curIn]searchKey)
upperBound = curIn-1;
else
lowerBound = curIn+1;
}
}
}
public void noDups2(){
insertSort();
for(int i = 0;inElems;i++){
for(int j = i+1;jnElems;j++)
if(a[i] == a[j]){
a[j] = -1;
}
}
display();
int index = 0;
for(int i=0;inElems;i++){
if(a[i]!=-1){
index++;
}else{
for(int j=index+1;jnElems;j++){
if(a[j]!=-1){
a[index] = a[j];
a[j]=-1;
index++;
break;
}
}
}
}
nElems = index;
}
}
上面的代码,是我以前敲的,有个find()方法是二分查找,然后再用插入排序去进行排序。