新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
定义一个结点类:
网站建设公司,为您提供网站建设,网站制作,网页设计及定制网站建设服务,专注于成都定制网站,高端网页制作,对成都水处理设备等多个行业拥有丰富的网站建设经验的网站建设公司。专业网站设计,网站优化推广哪家好,专业成都网站营销优化,H5建站,响应式网站。
public class Node {
private int value;
private Node leftNode;
private Node rightNode;
public Node getRightNode() {
return rightNode;
}
public void setRightNode(Node rightNode) {
this.rightNode = rightNode;
}
public int getValue() {
return value;
}
public void setValue(int value) {
this.value = value;
}
public Node getLeftNode() {
return leftNode;
}
public void setLeftNode(Node leftNode) {
this.leftNode = leftNode;
}
}
初始化结点树:
public void initNodeTree()
{
int nodeNumber;
HashMapString, Integer map = new HashMapString, Integer();
Node nodeTree = new Node();
Scanner reader = new Scanner(System.in);
nodeNumber = reader.nextInt();
for(int i = 0; i nodeNumber; i++) {
int value = reader.nextInt();
String str = reader.next();
map.put(str, value);
}
if (map.containsKey("#")) {
int value = map.get("#");
nodeTree.setValue(value);
setChildNode(map, value, nodeTree);
}
preTraversal(nodeTree);
}
private void setChildNode(HashMapString, Integer map, int nodeValue, Node parentNode) {
int value = 0;
if (map.containsKey("L" + nodeValue)) {
value = map.get("L" + nodeValue);
Node leftNode = new Node();
leftNode.setValue(value);
parentNode.setLeftNode(leftNode);
setChildNode(map, value, leftNode);
}
if (map.containsKey("R" + nodeValue)) {
value = map.get("R" + nodeValue);
Node rightNode = new Node();
rightNode.setValue(value);
parentNode.setRightNode(rightNode);
setChildNode(map, value, rightNode);
}
}
前序遍历该结点树:
public void preTraversal(Node nodeTree) {
if (nodeTree != null) {
System.out.print(nodeTree.getValue() + "\t");
preTraversal(nodeTree.getLeftNode());
preTraversal(nodeTree.getRightNode());
}
}
计算机科学中,二叉树是每个结点最多有两个子树的有序树。通常子树的根被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用作二叉查找树和二叉堆或是二叉排序树。
二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第i层至多有2的 i -1次方个结点;深度为k的二叉树至多有2^(k) -1个结点;对任何一棵二叉树T,如果其终端结点数(即叶子结点数)为n0,度为2的结点数为n2,则n0 = n2 + 1。
树是由一个或多个结点组成的有限集合,其中:
⒈必有一个特定的称为根(ROOT)的结点;
二叉树
⒉剩下的结点被分成n=0个互不相交的集合T1、T2、......Tn,而且, 这些集合的每一个又都是树。树T1、T2、......Tn被称作根的子树(Subtree)。
树的递归定义如下:(1)至少有一个结点(称为根)(2)其它是互不相交的子树
1.树的度——也即是宽度,简单地说,就是结点的分支数。以组成该树各结点中最大的度作为该树的度,如上图的树,其度为2;树中度为零的结点称为叶结点或终端结点。树中度不为零的结点称为分枝结点或非终端结点。除根结点外的分枝结点统称为内部结点。
2.树的深度——组成该树各结点的最大层次。
3.森林——指若干棵互不相交的树的集合,如上图,去掉根结点A,其原来的二棵子树T1、T2、T3的集合{T1,T2,T3}就为森林;
4.有序树——指树中同层结点从左到右有次序排列,它们之间的次序不能互换,这样的树称为有序树,否则称为无序树。
树的表示
树的表示方法有许多,常用的方法是用括号:先将根结点放入一对圆括号中,然后把它的子树由左至右的顺序放入括号中,而对子树也采用同样的方法处理;同层子树与它的根结点用圆括号括起来,同层子树之间用逗号隔开,最后用闭括号括起来。如右图可写成如下形式:
二叉树
(a( b(d,e), c( f( ,g(h,i) ), )))
你说的是二叉树吧·····
/**
* 二叉树测试二叉树顺序存储在treeLine中,递归前序创建二叉树。另外还有能
* 够前序、中序、后序、按层遍历二叉树的方法以及一个返回遍历结果asString的
* 方法。
*/
public class BitTree {
public static Node2 root;
public static String asString;
//事先存入的数组,符号#表示二叉树结束。
public static final char[] treeLine = {'a','b','c','d','e','f','g',' ',' ','j',' ',' ','i','#'};
//用于标志二叉树节点在数组中的存储位置,以便在创建二叉树时能够找到节点对应的数据。
static int index;
//构造函数
public BitTree() {
System.out.print("测试二叉树的顺序表示为:");
System.out.println(treeLine);
this.index = 0;
root = this.setup(root);
}
//创建二叉树的递归程序
private Node2 setup(Node2 current) {
if (index = treeLine.length) return current;
if (treeLine[index] == '#') return current;
if (treeLine[index] == ' ') return current;
current = new Node2(treeLine[index]);
index = index * 2 + 1;
current.left = setup(current.left);
index ++;
current.right = setup(current.right);
index = index / 2 - 1;
return current;
}
//二叉树是否为空。
public boolean isEmpty() {
if (root == null) return true;
return false;
}
//返回遍历二叉树所得到的字符串。
public String toString(int type) {
if (type == 0) {
asString = "前序遍历:\t";
this.front(root);
}
if (type == 1) {
asString = "中序遍历:\t";
this.middle(root);
}
if (type == 2) {
asString = "后序遍历:\t";
this.rear(root);
}
if (type == 3) {
asString = "按层遍历:\t";
this.level(root);
}
return asString;
}
//前序遍历二叉树的循环算法,每到一个结点先输出,再压栈,然后访问它的左子树,
//出栈,访问其右子树,然后该次循环结束。
private void front(Node2 current) {
StackL stack = new StackL((Object)current);
do {
if (current == null) {
current = (Node2)stack.pop();
current = current.right;
} else {
asString += current.ch;
current = current.left;
}
if (!(current == null)) stack.push((Object)current);
} while (!(stack.isEmpty()));
}
//中序遍历二叉树
private void middle(Node2 current) {
if (current == null) return;
middle(current.left);
asString += current.ch;
middle(current.right);
}
//后序遍历二叉树的递归算法
private void rear(Node2 current) {
if (current == null) return;
rear(current.left);
rear(current.right);
asString += current.ch;
}
}
/**
* 二叉树所使用的节点类。包括一个值域两个链域
*/
public class Node2 {
char ch;
Node2 left;
Node2 right;
//构造函数
public Node2(char c) {
this.ch = c;
this.left = null;
this.right = null;
}
//设置节点的值
public void setChar(char c) {
this.ch = c;
}
//返回节点的值
public char getChar() {
return ch;
}
//设置节点的左孩子
public void setLeft(Node2 left) {
this.left = left;
}
//设置节点的右孩子
public void setRight (Node2 right) {
this.right = right;
}
//如果是叶节点返回true
public boolean isLeaf() {
if ((this.left == null) (this.right == null)) return true;
return false;
}
}
一个作业题,里面有你要的东西。
主函数自己写吧。当然其它地方也有要改的。
我有很多个(假设10万个)数据要保存起来,以后还需要从保存的这些数据中检索是否存在某
个数据,(我想说出二叉树的好处,该怎么说呢?那就是说别人的缺点),假如存在数组中,
那么,碰巧要找的数字位于99999那个地方,那查找的速度将很慢,因为要从第1个依次往
后取,取出来后进行比较。平衡二叉树(构建平衡二叉树需要先排序,我们这里就不作考虑
了)可以很好地解决这个问题,但二叉树的遍历(前序,中序,后序)效率要比数组低很多,
public class Node {
public int value;
public Node left;
public Node right;
public void store(intvalue)
right.value=value;
}
else
{
right.store(value);
}
}
}
public boolean find(intvalue)
{
System.out.println("happen" +this.value);
if(value ==this.value)
{
return true;
}
else if(valuethis.value)
{
if(right ==null)returnfalse;
return right.find(value);
}else
{
if(left ==null)returnfalse;
return left.find(value);
}
}
public void preList()
{
System.out.print(this.value+ ",");
if(left!=null)left.preList();
if(right!=null) right.preList();
}
public void middleList()
{
if(left!=null)left.preList();
System.out.print(this.value+ ",");
if(right!=null)right.preList();
}
public void afterList()
{
if(left!=null)left.preList();
if(right!=null)right.preList();
System.out.print(this.value+ ",");
}
public static voidmain(String [] args)
{
int [] data =new int[20];
for(inti=0;idata.length;i++)
{
data[i] = (int)(Math.random()*100)+ 1;
System.out.print(data[i] +",");
}
System.out.println();
Node root = new Node();
root.value = data[0];
for(inti=1;idata.length;i++)
{
root.store(data[i]);
}
root.find(data[19]);
root.preList();
System.out.println();
root.middleList();
System.out.println();
root.afterList();
}
}