新网创想网站建设,新征程启航

为企业提供网站建设、域名注册、服务器等服务

python画图中函数 python画图函数turtle

python函数图的绘制

pre

我们提供的服务有:成都网站设计、网站建设、微信公众号开发、网站优化、网站认证、前郭ssl等。为上千余家企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的前郭网站制作公司

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.patches import Polygon

def func(x):

return -(x-2)*(x-8)+40

x=np.linspace(0,10)

y=func(x)

fig,ax = plt.subplots()

plt.plot(x,y,'r',linewidth=2)

plt.ylim(ymin=20)

a=2

b=9

ax.set_xticks([a,b])

ax.set_xticklabels(['$a$','$b$'])

ax.set_yticks([])

plt.figtext(0.9,0.05,'$x$')

plt.figtext(0.1,0.9,'$y$')

ix=np.linspace(a,b)

iy=func(ix)

ixy=zip(ix,iy)

verts=[(a,0)]+list(ixy)+[(b,0)]

poly = Polygon(verts,facecolor='0.9',edgecolor='0.5')

ax.add_patch(poly)

x_math=(a+b)*0.5

y_math=35

plt.text(x_math,y_math,r"$\int_a^b(-(x-2)*(x-8)+40)dx$",horizontalalignment='center',size=12)

plt.show()

/pre

不能直接写出函数的表达式 怎么在python里画函数图象呢?

不写出y=f(x)这样的表达式,由隐函数的等式直接绘制图像,以x²+y²+xy=1的图像为例,使用sympy间接调用matplotlib工具的代码和该二次曲线图像如下(注意python里的乘幂符号是**而不是^,还有,python的sympy工具箱的等式不是a==b,而是a-b或者Eq(a,b),这几点和matlab的区别很大)

直接在命令提示行的里面运行代码的效果

from sympy import *;

x,y=symbols('x y');

plotting.plot_implicit(x**2+y**2+x*y-1);

python中plt.post是什么函数

2018-05-04 11:11:36

122点赞

qiurisiyu2016

码龄7年

关注

matplotlib

1、plt.plot(x,y)

plt.plot(x,y,format_string,**kwargs) 

x轴数据,y轴数据,format_string控制曲线的格式字串 

format_string 由颜色字符,风格字符,和标记字符

import matplotlib.pyplot as plt

plt.plot([1,2,3,6],[4,5,8,1],’g-s’) 

plt.show()

结果

**kwards: 

color 颜色 

linestyle 线条样式 

marker 标记风格 

markerfacecolor 标记颜色 

markersize 标记大小 等等 

plt.plot([5,4,3,2,1])   

plt.show()

结果

plt.plot([20,2,40,6,80])   #缺省x为[0,1,2,3,4,...]

plt.show()

结果

plt.plot()参数设置

Property Value Type

alpha 控制透明度,0为完全透明,1为不透明

animated [True False]

antialiased or aa [True False]

clip_box a matplotlib.transform.Bbox instance

clip_on [True False]

clip_path a Path instance and a Transform instance, a Patch

color or c 颜色设置

contains the hit testing function

dash_capstyle [‘butt’ ‘round’ ‘projecting’]

dash_joinstyle [‘miter’ ‘round’ ‘bevel’]

dashes sequence of on/off ink in points

data 数据(np.array xdata, np.array ydata)

figure 画板对象a matplotlib.figure.Figure instance

label 图示

linestyle or ls 线型风格[‘-’ ‘–’ ‘-.’ ‘:’ ‘steps’ …]

linewidth or lw 宽度float value in points

lod [True False]

marker 数据点的设置[‘+’ ‘,’ ‘.’ ‘1’ ‘2’ ‘3’ ‘4’]

markeredgecolor or mec any matplotlib color

markeredgewidth or mew float value in points

markerfacecolor or mfc any matplotlib color

markersize or ms float

markevery [ None integer (startind, stride) ]

picker used in interactive line selection

pickradius the line pick selection radius

solid_capstyle [‘butt’ ‘round’ ‘projecting’]

solid_joinstyle [‘miter’ ‘round’ ‘bevel’]

transform a matplotlib.transforms.Transform instance

visible [True False]

xdata np.array

ydata np.array

zorder any number

确定x,y值,将其打印出来

x=np.linspace(-1,1,5)

y=2*x+1

plt.plot(x,y)

plt.show()

2、plt.figure()用来画图,自定义画布大小

fig1 = plt.figure(num='fig111111', figsize=(10, 3), dpi=75, facecolor='#FFFFFF', edgecolor='#0000FF')

plt.plot(x,y1)           #在变量fig1后进行plt.plot操作,图形将显示在fig1中

fig2 = plt.figure(num='fig222222', figsize=(6, 3), dpi=75, facecolor='#FFFFFF', edgecolor='#FF0000')

plt.plot(x,y2)           #在变量fig2后进行plt.plot操作,图形将显示在fig2中

plt.show()

plt.close()

结果

fig1 = plt.figure(num='fig111111', figsize=(10, 3), dpi=75, facecolor='#FFFFFF', edgecolor='#0000FF')

plt.plot(x,y1)

plt.plot(x,y2)

fig2 = plt.figure(num='fig222222', figsize=(6, 3), dpi=75, facecolor='#FFFFFF', edgecolor='#FF0000')

plt.show()

plt.close()

结果:

3、plt.subplot(222)

将figure设置的画布大小分成几个部分,参数‘221’表示2(row)x2(colu),即将画布分成2x2,两行两列的4块区域,1表示选择图形输出的区域在第一块,图形输出区域参数必须在“行x列”范围                       ,此处必须在1和2之间选择——如果参数设置为subplot(111),则表示画布整个输出,不分割成小块区域,图形直接输出在整块画布上

plt.subplot(222) 

plt.plot(y,xx)    #在2x2画布中第二块区域输出图形

plt.show()

plt.subplot(223)  #在2x2画布中第三块区域输出图形

plt.plot(y,xx)

plt.subplot(224)  # 在在2x2画布中第四块区域输出图形

plt.plot(y,xx)

4、plt.xlim设置x轴或者y轴刻度范围

plt.xlim(0,1000)  #  设置x轴刻度范围,从0~1000         #lim为极限,范围

plt.ylim(0,20)   # 设置y轴刻度的范围,从0~20

5、plt.xticks():设置x轴刻度的表现方式

fig2 = plt.figure(num='fig222222', figsize=(6, 3), dpi=75, facecolor='#FFFFFF', edgecolor='#FF0000')

plt.plot(x,y2)

plt.xticks(np.linspace(0,1000,15,endpoint=True))  # 设置x轴刻度

plt.yticks(np.linspace(0,20,10,endpoint=True))

结果

6、ax2.set_title('xxx')设置标题,画图

#产生[1,2,3,...,9]的序列

x = np.arange(1,10)

y = x

fig = plt.figure()

ax1 = fig.add_subplot(221)

#设置标题

ax1.set_title('Scatter Plot1')

plt.xlabel('M')

plt.ylabel('N')

ax2 = fig.add_subplot(222)

ax2.set_title('Scatter Plot2clf')

#设置X轴标签

plt.xlabel('X')           #设置X/Y轴标签是在对应的figure后进行操作才对应到该figure

#设置Y轴标签

plt.ylabel('Y')

#画散点图

ax1.scatter(x,y,c = 'r',marker = 'o')          #可以看出画散点图是在对figure进行操作

ax2.scatter(x,y,c = 'b',marker = 'x')

#设置图标

plt.legend('show picture x1 ')

#显示所画的图

plt.show()

结果

7、plt.hist()绘制直方图(可以将高斯函数这些画出来)

绘图都可以调用matplotlib.pyplot库来进行,其中的hist函数可以直接绘制直方图

调用方式:

n, bins, patches = plt.hist(arr, bins=10, normed=0, facecolor='black', edgecolor='black',alpha=1,histtype='bar')

hist的参数非常多,但常用的就这六个,只有第一个是必须的,后面四个可选

arr: 需要计算直方图的一维数组

bins: 直方图的柱数,可选项,默认为10

normed: 是否将得到的直方图向量归一化。默认为0

facecolor: 直方图颜色

edgecolor: 直方图边框颜色

alpha: 透明度

histtype: 直方图类型,‘bar’, ‘barstacked’, ‘step’, ‘stepfilled’

返回值 :

n: 直方图向量,是否归一化由参数normed设定

bins: 返回各个bin的区间范围

patches: 返回每个bin里面包含的数据,是一个list

from skimage import data

import matplotlib.pyplot as plt

img=data.camera()

plt.figure("hist")

arr=img.flatten()

n, bins, patches = plt.hist(arr, bins=256, normed=1,edgecolor='None',facecolor='red')  

plt.show()

例:

mu, sigma = 0, .1

s = np.random.normal(loc=mu, scale=sigma, size=1000)

a,b,c = plt.hist(s, bins=3)

print("a: ",a)

print("b: ",b)

print("c: ",c)

plt.show()

结果:

a:  [ 85. 720. 195.]         #每个柱子的值

b:  [-0.36109509 -0.1357318   0.08963149  0.31499478]   #每个柱的区间范围

c:  a list of 3 Patch objects       #总共多少柱子

8、ax1.scatter(x,y,c = 'r',marker = 'o') 

使用注意:确定了figure就一定要确定象限,然后用scatter,或者不确定象限,直接使用plt.scatter

x = np.arange(1,10)

y = x

fig = plt.figure()

a=plt.subplot()            #默认为一个象限

# a=fig.add_subplot(222)

a.scatter(x,y,c='r',marker='o')

plt.show()

结果

x = np.arange(1,10)

y = x

plt.scatter(x,y,c='r',marker='o')

plt.show()

结果

import numpy as np

import matplotlib.pyplot as plt

x = np.arange(1,10)

y = x

plt.figure()

plt.scatter(x,y,c='r',marker='o')

plt.show()

结果

文章知识点与官方知识档案匹配

Python入门技能树基础语法函数

211242 人正在系统学习中

打开CSDN APP,看更多技术内容

plt的一些函数的使用_班花i的博客_plt函数

plt.函数 Fwuyi的博客 6513 1plt.figure( )函数:创建画布 2plt.plot(x, y, format_string, label="图例名"):绘制点和线, 并控制样式。 其中x是x轴数据,y是y轴数据,xy一般是列表和数组。format_string 是字符串的格式包括线...

继续访问

Python的数据科学函数包(三)——matplotlib(plt)_hxxjxw的博客...

import matplotlib.pyplot as plt plt.imshow(img) plt.show() plt.imshow()有一个cmap参数,即指定颜色映射规则。默认的cmap即颜料板是十色环 哪怕是单通道图,值在0-1之间,用plt.imshow()仍然可以显示彩色图,就是因为颜色映射的关...

继续访问

对Python中plt的画图函数详解

今天小编就为大家分享一篇对Python中plt的画图函数详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

plt.plot()函数详解

plt.plot()函数详细介绍 plt.plot(x, y, format_string, **kwargs) 参数 说明 x X轴数据,列表或数组,可选 y Y轴数据,列表或数组 format_string 控制曲线的格式字符串,可选 **kwargs 第二组或更多(x,y,format_string),可画多条曲线 format_string 由颜色字符、风格字符、标记字符组成 颜色字符 'b' 蓝色 'm' 洋红色 magenta 'g' 绿色 'y.

继续访问

python图像处理基础知识(plt库函数说明)_小草莓爸爸的博客_p...

1.画图(plt库)1.1 plt.figure(num=’’,figsize=(x, y),dpi= ,facecolor=’’,edgecolor=’’)num:表示整个图标的标题 figsize:表示尺寸 facecolor:表示1.2 plt.plot(x,y,format_string,**kwargs)...

继续访问

plt的一些函数使用_neo3301的博客_plt函数

1、plt.plot(x,y) plt.plot(x,y,format_string,**kwargs) x轴数据,y轴数据,format_string控制曲线的格式字串 format_string 由颜色字符,风格字符,和标记字符 import matplotlib.pyplot as plt ...

继续访问

最新发布 python plt 绘图详解(plt.版本)

python plt绘图详解

继续访问

python图像处理基础知识(plt库函数说明)

import matplotlib.pyplot as plt的一些基础用法,包括直方图

继续访问

plt.subplot() 函数解析_Ensoleile。的博客_plt.subplot

plt.subplot()函数用于直接制定划分方式和位置进行绘图。 函数原型 subplot(nrows, ncols, index, **kwargs),一般我们只用到前三个参数,将整个绘图区域分成 nrows 行和 ncols 列,而 index 用于对子图进行编号。

继续访问

...中plt的画图函数_Ethan的博客的博客_python的plt函数

1、plt.legend plt.legend(loc=0)#显示图例的位置,自适应方式 说明: 'best' : 0, (only implemented for axes legends)(自适应方式) 'upper right' : 1, 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, ...

继续访问

plt.函数

1 plt.figure( ) 函数:创建画布 2 plt.plot(x, y, format_string, label="图例名"):绘制点和线, 并控制样式。 其中x是x轴数据,y是y轴数据,xy一般是列表和数组。format_string 是字符串的格式包括线条颜色、点类型、线类型三个部分。向参数label传入图例名,使用plt.legend( )创建图例。 2.1 画一条含x、y的线条 import matplotlib.pyplot as plt x = [1, 2, 3, 4] y

继续访问

Python深度学习入门之plt画图工具基础使用(注释详细,超级简单)

Python自带的plt是深度学习最常用的库之一,在发表文章时必然得有图作为支撑,plt为深度学习必备技能之一。作为深度学习入门,只需要掌握一些基础画图操作即可,其他等要用到的时候看看函数API就行。 1 导入plt库(名字长,有点难记) import matplotlib.pyplot as plt 先随便画一个图,保存一下试试水: plt.figure(figsize=(12,8), dpi=80) plt.plot([1,2,6,4],[4,5,6,9]) plt.savefig('./plt_pn

继续访问

python画图plt函数学习_dlut_yan的博客_python plt

figure()函数可以帮助我们同时处理生成多个图,而subplot()函数则用来实现,在一个大图中,出现多个小的子图。 处理哪个figure,则选择哪个figure,再进行画图。 参考博客 importmatplotlib.pyplotaspltimportnumpyasnp x=np.arange(-1,1,0.1...

继续访问

plt.plot()函数_安之若醇的博客_plt.plot()函数

plt.plot()函数是matplotlib.pyplot用于画图的函数传一个值列表:import numpy as npimport matplotlib.pyplot as pltt=[1,2,3,4,5]y=[3,4,5,6,7]plt.plot(t, y)当x省略的时候,默认[0,1…,N-1]递增可以传元组也可以传...

继续访问

python画图plt函数学习

python中的绘图工具 :matplotli,专门用于画图。 一. 安装与导入 工具包安装:conda install matplotli 导入:import matplotlib.pyplot as plt 画图主要有:列表绘图;多图绘图;数组绘图 二. 列表绘图 1. 基础绘图:plt.plot;plt.show import matplotlib.pyplot as plt x = [1, 2, 3, 4] y = [1, 4, 9, 16] plt.plot(x, y) plt.show()

继续访问

python中plt的含义_对Python中plt的画图函数详解

1、plt.legendplt.legend(loc=0)#显示图例的位置,自适应方式说明:'best' : 0, (only implemented for axes legends)(自适应方式)'upper right' : 1,'upper left' : 2,'lower left' : 3,'lower right' : 4,'right' : 5,'cent...

继续访问

Python中plt绘图包的基本使用方法

其中,前两个输入参数表示x轴和y轴的坐标,plot函数将提供的坐标点连接,即成为要绘制的各式线型。常用的参数中,figsize需要一个元组值,表示空白画布的横纵坐标比;plt.xticks()和plt.yticks()函数用于设置坐标轴的步长和刻度。plt.xlabel()、plt.ylabel()和plt.title()函数分别用于设置x坐标轴、y坐标轴和图标的标题信息。的数据处理时,发现了自己对plt的了解和使用的缺失,因此进行一定的基础用法的学习,方便之后自己的使用,而不需要频繁的查阅资料。...

继续访问

python-plt.xticks与plt.yticks

栗子: plt.figure(figsize=(10, 10)) for i in range(25): plt.subplot(5, 5, i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() 设置x或y轴对应显

继续访问

plt绘图总结

matplotlib绘图

继续访问

Python的数据科学函数包(三)——matplotlib(plt)

继续访问

热门推荐 python plt 画图

使用csv数据文件在百度网盘 import pandas as pd unrate = pd.read_csv('unrate.csv') # pd.to_datetime() 转换成日期格式,即由 1948/1/1 转换为 1948-01-01 unrate['DATE'] = pd.to_datetime(unrate['DATE']) print(unrate.head(12)) ...

继续访问

python数据可视化实现步骤,Python数据可视化图实现过程详解

Python数据可视化图实现过程详解更多python视频教程请到菜鸟教程画分布图代码示例:# encoding=utf-8import matplotlib.pyplot as pltfrom pylab import * # 支持中文mpl.rcParams[‘font.sans-serif’] = [‘SimHei’]‘mention...

继续访问

matplotlib-plt.plot用法

文章目录 英语好的直接参考这个网站 matplotlib.pyplot.plot(*args, scalex=True, scaley=True, data=None, **kwargs) 将x,y绘制为线条或标记 参数: x, y:数据点的水平/垂直坐标。x值是可选的,默认为range(len(y))。通常,这些参数是 一维数组。它们也可以是标量,也可以是二维的(在这种情况下,列代表单独的数据集)。 这些参数不能作为关键字传递。 fmt:格式字符串,格式字符串只是用于快速设置基本行属性的缩

继续访问

python Plt学习

plt的简单学习

继续访问

plt.show()和plt.imshow()的区别

问题:plt.imshow()无法显示图像 解决方法:添加:plt.show(),即 plt.imshow(image) #image表示待处理的图像 plt.show() 原理:plt.imshow()函数负责对图像进行处理,并显示其格式,而plt.show()则是将plt.imshow()处理后的函数显示出来。 ...

继续访问

python题库刷题网站_python在线刷题网站

{"moduleinfo":{"card_count":[{"count_phone":1,"count":1}],"search_count":[{"count_phone":4,"count":4}]},"card":[{"des":"阿里技术人对外发布原创技术内容的最大平台;社区覆盖了云计算、大数据、人工智能、IoT、云原生、数据库、微服务、安全、开发与运维9大技术领域。","link1":...

继续访问

python xticks_Python Matplotlib.pyplot.yticks()用法及代码示例

Matplotlib是Python中的一个库,它是数字的-NumPy库的数学扩展。 Pyplot是Matplotlib模块的基于状态的接口,该模块提供了MATLAB-like接口。Matplotlib.pyplot.yticks()函数matplotlib库的pyplot模块中的annotate()函数用于获取和设置y轴的当前刻度位置和标签。用法: matplotlib.pyplot.yticks...

继续访问

python的plt函数_plt.plot画图函数

[‘font.sans-serif’]=[‘SimHei’]plt.rcParams[‘axes.unicode_minus’] = False#设置横纵坐标的名称以及对应字体格式font1 = {‘weight’ : ‘normal’,‘size’ : 15,...

继续访问

plt函数

写评论

7

794

122

Python气象数据处理与绘图(2):常用数据计算方法

对于气象绘图来讲,第一步是对数据的处理,通过各类公式,或者统计方法将原始数据处理为目标数据。

按照气象统计课程的内容,我给出了一些常用到的统计方法的对应函数:

在计算气候态,区域平均时均要使用到求均值函数,对应NCL中的dim_average函数,在python中通常使用np.mean()函数

numpy.mean(a, axis, dtype)

假设a为[time,lat,lon]的数据,那么

需要特别注意的是,气象数据中常有缺测,在NCL中,使用求均值函数会自动略过,而在python中,当任意一数与缺测(np.nan)计算的结果均为np.nan,比如求[1,2,3,4,np.nan]的平均值,结果为np.nan

因此,当数据存在缺测数据时,通常使用np.nanmean()函数,用法同上,此时[1,2,3,4,np.nan]的平均值为(1+2+3+4)/4 = 2.5

同样的,求某数组最大最小值时也有np.nanmax(), np.nanmin()函数来补充np.max(), np.min()的不足。

其他很多np的计算函数也可以通过在前边加‘nan’来使用。

另外,

也可以直接将a中缺失值全部填充为0。

np.std(a, axis, dtype)

用法同np.mean()

在NCL中有直接求数据标准化的函数dim_standardize()

其实也就是一行的事,根据需要指定维度即可。

皮尔逊相关系数:

相关可以说是气象科研中最常用的方法之一了,numpy函数中的np.corrcoef(x, y)就可以实现相关计算。但是在这里我推荐scipy.stats中的函数来计算相关系数:

这个函数缺点和有点都很明显,优点是可以直接返回相关系数R及其P值,这避免了我们进一步计算置信度。而缺点则是该函数只支持两个一维数组的计算,也就是说当我们需要计算一个场和一个序列的相关时,我们需要循环来实现。

其中a[time,lat,lon],b[time]

(NCL中为regcoef()函数)

同样推荐Scipy库中的stats.linregress(x,y)函数:

slop: 回归斜率

intercept:回归截距

r_value: 相关系数

p_value: P值

std_err: 估计标准误差

直接可以输出P值,同样省去了做置信度检验的过程,遗憾的是仍需同相关系数一样循环计算。

python 如何绘制线性函数图?

import matplotlib.pyplot as plt

plt.scatter(xdata,ydata)

(xdata,ydata为两个需要作图的数据集)

Python如何画cos和sin的图啊?

在python自带编辑器IDLE中,新建脚本如作图.py

导入需要的模块

import numpy as np

import scipy as sp

import pylab as pl

2

输入代码

x=np.linspace(0,4*np.pi,100)

pl.plot(x,pl.sin(x))

pl.show()

3

执行代码,按F5,可直接显示图片

4

几点说明:

1. 方法linspace(0,4*np.pi,100)表示从0开始,到4*pi结束,生成100个点

2. 方法plot为画图函数,相当于plot(x,y),x为横坐标,y为纵坐标

3.show()为展示出来

希望采纳!!


分享文章:python画图中函数 python画图函数turtle
分享路径:http://wjwzjz.com/article/doccehj.html
在线咨询
服务热线
服务热线:028-86922220
TOP