新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章给大家介绍利用python 如何识别图片中人物的表情,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
目前成都创新互联已为上千余家的企业提供了网站建设、域名、网页空间、网站托管维护、企业网站设计、杞县网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。实现思路
使用OpenCV识别图片中的脸,在使用keras进行表情识别。
效果预览
实现代码
使用keras实现的,和性别识别相同,型数据使用的是oarriaga/face_classification的,代码如下:
#coding=utf-8 #表情识别 import cv2 from keras.models import load_model import numpy as np import chineseText import datetime startTime = datetime.datetime.now() emotion_classifier = load_model( 'classifier/emotion_models/simple_CNN.530-0.65.hdf5') endTime = datetime.datetime.now() print(endTime - startTime) emotion_labels = { 0: '生气', 1: '厌恶', 2: '恐惧', 3: '开心', 4: '难过', 5: '惊喜', 6: '平静' } img = cv2.imread("img/emotion/emotion.png") face_classifier = cv2.CascadeClassifier( "C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml" ) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_classifier.detectMultiScale( gray, scaleFactor=1.2, minNeighbors=3, minSize=(40, 40)) color = (255, 0, 0) for (x, y, w, h) in faces: gray_face = gray[(y):(y + h), (x):(x + w)] gray_face = cv2.resize(gray_face, (48, 48)) gray_face = gray_face / 255.0 gray_face = np.expand_dims(gray_face, 0) gray_face = np.expand_dims(gray_face, -1) emotion_label_arg = np.argmax(emotion_classifier.predict(gray_face)) emotion = emotion_labels[emotion_label_arg] cv2.rectangle(img, (x + 10, y + 10), (x + h - 10, y + w - 10), (255, 255, 255), 2) img = chineseText.cv2ImgAddText(img, emotion, x + h * 0.3, y, color, 20) cv2.imshow("Image", img) cv2.waitKey(0) cv2.destroyAllWindows()