新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章将为大家详细讲解有关pandas中iloc,loc取数据有什么区别,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
创新互联坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都网站设计、成都做网站、外贸网站建设、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的修水网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!Dataframe使用loc取某几行几列的数据:
print(df.loc[0:4,['item_price_level','item_sales_level','item_collected_level','item_pv_level']])
结果如下,取了index为0到4的五行四列数据。
item_price_level item_sales_level item_collected_level item_pv_level 0 3 3 4 14 1 3 3 4 14 2 3 3 4 14 3 3 3 4 14 4 3 3 4 14
而使用iloc,如下所示:
print(df.iloc[0:4,6:9])
结果如下,取得是index为0到3四行,以及第6到8列(从0列开始)3列数据。
item_price_level item_sales_level item_collected_level 0 3 3 4 1 3 3 4 2 3 3 4 3 3 3 4
另外loc可以按条件取数据:
print(df.loc[df.item_price_level==0,:]) print(df.loc[df[item_price_level]==0,:])
上面两条语句效果是一样的,都是取item_price_level为0的所有数据。可以把冒号改成几列列名,只取满足条件的某几列数据:
print(df.loc[df['item_price_level']==0,['item_price_level','item_sales_level']])
结果前两行如下:
item_price_level item_sales_level 129141 0 10 129142 0 10
条件为多个时 (同时满足两个条件如下):
print(df.loc[(item_price_level==0) & (item_sales_level==3),:])
关于“pandas中iloc,loc取数据有什么区别”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。