新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章主要介绍tensorflow之内存暴涨问题的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:申请域名、网络空间、营销软件、网站建设、富宁网站维护、网站推广。在用tensorflow实现一些模型的时候,有时候我们在运行程序的时候,会发现程序占用的内存在不断增长。最后内存溢出,程序被kill掉了。
这个问题,其实有两个可能性。一个是比较常见,同时也是很难发现的。这个问题的解决,需要我们知道tensorflow在构图的时候,是没有所谓的临时变量的,只要有operator。那么tensorflow就会在构建的图中增加这个operator所代表的节点。所以,在运行程序的过程中,内存不断增长的原因就是在模型训练迭代的过程中,tensorflow一直在帮你增加图的节点。导致内存占用越来越多。
那么什么情况下就会像上面说的那样呢?我们举个例子:
import tensorflow as tf x = tf.Variable(tf.constant(1)) y = tf.constant(2) sess = tf.Session() sess.run(tf.global_variables_initializer()) while True: print(sess.run(x+y))
如果你运行上面这段代码,会发现在运行的过程中,内存占用越来越大。原因就在于sess.run(x+y)这个语句。我们知道在tensorflow中,所有的操作都是graph的节点。而在迭代的过程中,x+y这个operator(操作)是匿名的,所以它会不断地重复,在graph中创建节点,导致内存占用越来越大。
所以要对上面的代码进行修改:
z = x+y while True: print(sess.run(z))
这样就不会出现问题了。
上面只是一个简单的例子,我们可以很快发现问题。但是有时候我们的模型比较复杂,很难判断是否在迭代的过程中一直在增加节点。那怎么办呢?
其实在tensorflow里面有个函数叫做:
sess.graph.finalize()
只要每一次构图完成后,调用这个函数。然后运行程序,如果你的程序在运行的过程中还一直新建节点,这个函数就会检测到,然后就会报错。这样你就知道你的程序中一定有不合理的地方。
另一个导致内存暴涨的原因是,数据的加载问题。tensorflow现在有一个API接口,tf.data.Dataset 。这个接口里面有个函数叫做cache(filename)。cache函数的作用是将加载进来的数据存放到filename指定的地方。但是如果我们没有指定filename,数据就是一直存储在内存中。所以,随着迭代次数的增加,存储在内存中的数据越来越多,就会导致内存暴涨。所以要么不要使用这个函数,要么就要记得添加filename参数。
以上是“tensorflow之内存暴涨问题的示例分析”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注创新互联成都网站设计公司行业资讯频道!
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。