新网创想网站建设,新征程启航
为企业提供网站建设、域名注册、服务器等服务
这篇文章给大家分享的是有关TensorFlow如何实现Batch Normalization的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
创新互联主要从事网站建设、做网站、网页设计、企业做网站、公司建网站等业务。立足成都服务繁昌,10余年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:18980820575一、BN(Batch Normalization)算法
1. 对数据进行归一化处理的重要性
神经网络学习过程的本质就是学习数据分布,在训练数据与测试数据分布不同情况下,模型的泛化能力就大大降低;另一方面,若训练过程中每批batch的数据分布也各不相同,那么网络每批迭代学习过程也会出现较大波动,使之更难趋于收敛,降低训练收敛速度。对于深层网络,网络前几层的微小变化都会被网络累积放大,则训练数据的分布变化问题会被放大,更加影响训练速度。
2. BN算法的强大之处
1)为了加速梯度下降算法的训练,我们可以采取指数衰减学习率等方法在初期快速学习,后期缓慢进入全局最优区域。使用BN算法后,就可以直接选择比较大的学习率,且设置很大的学习率衰减速度,大大提高训练速度。即使选择了较小的学习率,也会比以前不使用BN情况下的收敛速度快。总结就是BN算法具有快速收敛的特性。
2)BN具有提高网络泛化能力的特性。采用BN算法后,就可以移除针对过拟合问题而设置的dropout和L2正则化项,或者采用更小的L2正则化参数。
3)BN本身是一个归一化网络层,则局部响应归一化层(Local Response Normalization,LRN层)则可不需要了(Alexnet网络中使用到)。
3. BN算法概述
BN算法提出了变换重构,引入了可学习参数γ、β,这就是算法的关键之处:
引入这两个参数后,我们的网络便可以学习恢复出原是网络所要学习的特征分布,BN层的钱箱传到过程如下:
其中m为batchsize。BatchNormalization中所有的操作都是平滑可导,这使得back propagation可以有效运行并学到相应的参数γ,β。需要注意的一点是Batch Normalization在training和testing时行为有所差别。Training时μβ和σβ由当前batch计算得出;在Testing时μβ和σβ应使用Training时保存的均值或类似的经过处理的值,而不是由当前batch计算。
二、TensorFlow相关函数
1.tf.nn.moments(x, axes, shift=None, name=None, keep_dims=False)
x是输入张量,axes是在哪个维度上求解, 即想要 normalize的维度, [0] 代表 batch 维度,如果是图像数据,可以传入 [0, 1, 2],相当于求[batch, height, width] 的均值/方差,注意不要加入channel 维度。该函数返回两个张量,均值mean和方差variance。
2.tf.identity(input, name=None)
返回与输入张量input形状和内容一致的张量。
3.tf.nn.batch_normalization(x, mean, variance, offset, scale, variance_epsilon,name=None)
计算公式为scale(x - mean)/ variance + offset。
这些参数中,tf.nn.moments可得到均值mean和方差variance,offset和scale是可训练的,offset一般初始化为0,scale初始化为1,offset和scale的shape与mean相同,variance_epsilon参数设为一个很小的值如0.001。
三、TensorFlow代码实现
1. 完整代码
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt ACTIVITION = tf.nn.relu N_LAYERS = 7 # 总共7层隐藏层 N_HIDDEN_UNITS = 30 # 每层包含30个神经元 def fix_seed(seed=1): # 设置随机数种子 np.random.seed(seed) tf.set_random_seed(seed) def plot_his(inputs, inputs_norm): # 绘制直方图函数 for j, all_inputs in enumerate([inputs, inputs_norm]): for i, input in enumerate(all_inputs): plt.subplot(2, len(all_inputs), j*len(all_inputs)+(i+1)) plt.cla() if i == 0: the_range = (-7, 10) else: the_range = (-1, 1) plt.hist(input.ravel(), bins=15, range=the_range, color='#FF5733') plt.yticks(()) if j == 1: plt.xticks(the_range) else: plt.xticks(()) ax = plt.gca() ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') plt.title("%s normalizing" % ("Without" if j == 0 else "With")) plt.draw() plt.pause(0.01) def built_net(xs, ys, norm): # 搭建网络函数 # 添加层 def add_layer(inputs, in_size, out_size, activation_function=None, norm=False): Weights = tf.Variable(tf.random_normal([in_size, out_size], mean=0.0, stddev=1.0)) biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) Wx_plus_b = tf.matmul(inputs, Weights) + biases if norm: # 判断是否是Batch Normalization层 # 计算均值和方差,axes参数0表示batch维度 fc_mean, fc_var = tf.nn.moments(Wx_plus_b, axes=[0]) scale = tf.Variable(tf.ones([out_size])) shift = tf.Variable(tf.zeros([out_size])) epsilon = 0.001 # 定义滑动平均模型对象 ema = tf.train.ExponentialMovingAverage(decay=0.5) def mean_var_with_update(): ema_apply_op = ema.apply([fc_mean, fc_var]) with tf.control_dependencies([ema_apply_op]): return tf.identity(fc_mean), tf.identity(fc_var) mean, var = mean_var_with_update() Wx_plus_b = tf.nn.batch_normalization(Wx_plus_b, mean, var, shift, scale, epsilon) if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs fix_seed(1) if norm: # 为第一层进行BN fc_mean, fc_var = tf.nn.moments(xs, axes=[0]) scale = tf.Variable(tf.ones([1])) shift = tf.Variable(tf.zeros([1])) epsilon = 0.001 ema = tf.train.ExponentialMovingAverage(decay=0.5) def mean_var_with_update(): ema_apply_op = ema.apply([fc_mean, fc_var]) with tf.control_dependencies([ema_apply_op]): return tf.identity(fc_mean), tf.identity(fc_var) mean, var = mean_var_with_update() xs = tf.nn.batch_normalization(xs, mean, var, shift, scale, epsilon) layers_inputs = [xs] # 记录每一层的输入 for l_n in range(N_LAYERS): # 依次添加7层 layer_input = layers_inputs[l_n] in_size = layers_inputs[l_n].get_shape()[1].value output = add_layer(layer_input, in_size, N_HIDDEN_UNITS, ACTIVITION, norm) layers_inputs.append(output) prediction = add_layer(layers_inputs[-1], 30, 1, activation_function=None) cost = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1])) train_op = tf.train.GradientDescentOptimizer(0.001).minimize(cost) return [train_op, cost, layers_inputs] fix_seed(1) x_data = np.linspace(-7, 10, 2500)[:, np.newaxis] np.random.shuffle(x_data) noise =np.random.normal(0, 8, x_data.shape) y_data = np.square(x_data) - 5 + noise plt.scatter(x_data, y_data) plt.show() xs = tf.placeholder(tf.float32, [None, 1]) ys = tf.placeholder(tf.float32, [None, 1]) train_op, cost, layers_inputs = built_net(xs, ys, norm=False) train_op_norm, cost_norm, layers_inputs_norm = built_net(xs, ys, norm=True) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) cost_his = [] cost_his_norm = [] record_step = 5 plt.ion() plt.figure(figsize=(7, 3)) for i in range(250): if i % 50 == 0: all_inputs, all_inputs_norm = sess.run([layers_inputs, layers_inputs_norm], feed_dict={xs: x_data, ys: y_data}) plot_his(all_inputs, all_inputs_norm) sess.run([train_op, train_op_norm], feed_dict={xs: x_data[i*10:i*10+10], ys: y_data[i*10:i*10+10]}) if i % record_step == 0: cost_his.append(sess.run(cost, feed_dict={xs: x_data, ys: y_data})) cost_his_norm.append(sess.run(cost_norm, feed_dict={xs: x_data, ys: y_data})) plt.ioff() plt.figure() plt.plot(np.arange(len(cost_his))*record_step, np.array(cost_his), label='Without BN') # no norm plt.plot(np.arange(len(cost_his))*record_step, np.array(cost_his_norm), label='With BN') # norm plt.legend() plt.show()
2. 实验结果
输入数据分布:
批标准化BN效果对比:
感谢各位的阅读!关于“TensorFlow如何实现Batch Normalization”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。